Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "swarm" wg kryterium: Wszystkie pola


Tytuł:
Multi-swarm that learns
Autorzy:
Trojanowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/969816.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
particle swarm optimization (PSO)
multi-swarm
dynamic optimization
memory
clusters
clustering evolving data streams
quantum particles
Opis:
This paper studies particle swarm optimization approach enriched by two versions of an extension aimed at gathering information during the optimization process. Application of these extensions, called memory mechanisms, increases computational cost, but it is spent to a benefit by incorporating the knowledge about the problem into the algorithm and this way improving its search abilities. The first mechanism is based on the idea of storing explicit solutions while the second one applies one-pass clustering algorithm to build clusters containing search experiences. The main disadvantage of the former mechanism is lack of good rules for identification of outdated solutions among the remembered ones and as a consequence unlimited growth of the memory structures as the optimization process goes. The latter mechanism uses other form of knowledge representation and thus allows us to control the amount of allocated resources more efficiently than the former one. Both mechanisms have been experimentally verified and their advantages and disadvantages in application for different types of optimized environments are discussed.
Źródło:
Control and Cybernetics; 2010, 39, 2; 359-375
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Celestial navigation fix based on particle swarm optimization
Autorzy:
Tsou, M.-C.
Powiązania:
https://bibliotekanauki.pl/articles/258524.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
particle swarm optimization (PSO)
Celestial navigation
Intercept method
Opis:
A technique for solving celestial fix problems is proposed in this study. This method is based on Particle Swarm Optimization from the field of swarm intelligence, utilizing its superior optimization and searching abilities to obtain the most probable astronomical vessel position. In addition to being applicable to two-body fix, multi-body fix, and high-altitude observation problems, it is also less reliant on the initial dead reckoning position. Moreover, by introducing spatial data processing and display functions in a Geographical Information System, calculation results and chart work used in Circle of Position graphical positioning can both be integrated. As a result, in addition to avoiding tedious and complicated computational and graphical procedures, this work has more flexibility and is more robust when compared to other analytical approaches.
Źródło:
Polish Maritime Research; 2015, 3; 20-27
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie algorytmów rojowych do optymalizacji parametrów w modelach układów regulacji
Application of swarm intelligence algorithms to optimization of control system models
Autorzy:
Tomera, M.
Powiązania:
https://bibliotekanauki.pl/articles/269153.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
algorytmy rojowe
optymalizacja parametrów
algorytm mrówkowy
algorytm sztucznej kolonii pszczół
algorytm optymalizacji rojem cząstek
swarm intelligence
swarm based optimization
ant colony optimization
Artificial Bee Colony
particle swarm optimization (PSO)
Opis:
W pracy przedstawione zostały algorytmy rojowe, takie jak: algorytm mrówkowy, zmodyfikowany algorytm mrówkowy, algorytm sztucznej kolonii pszczół oraz algorytm optymalizacji rojem cząstek. Dla tych algorytmów przygotowane zostało oprogramowanie w Matlabie, pozwalające na optymalizację parametrów poszukiwanych modeli matematycznych, wyznaczanych na podstawie przeprowadzonych testów identyfikacyjnych lub na optymalizację parametrów regulatorów zastosowanych w modelach matematycznych układów sterowania.
The paper presents the swarm intelligence algorithms, such as: ant colony algorithm (ACO), the modified ant colony algorithm (MACO), the artificial bee colony algorithm (ABC) and the particle swarm optimization algorithm (PSO). Ant colony optimization (ACO) based upon the observation of the behavior of ant colonies looking for food in the surrounding anthill. Feeding ants it is based on finding the shortest path transitions between a food source and the anthill. In the process of foraging ants on their paths crossing from the nest to a food source and back, they leave a pheromone trail. The work presents also the modified ant colony algorithm (MACO). This algorithm is based on searching the solution space surrounded by the best solution obtained in the previous iteration. If you find a local minimum, the proposed algorithm uses pheromone to find a new solution space, while retaining the position information current local minimum. The artificial bee colony algorithm is one of the well-known swarm intelligence algorithms. In the past decade there has been created several different algorithms based on the observation of the behavior of cooperative bees. Among them, the most frequently analyzed and used is bee algorithm proposed in 2005 by Dervis Karaboga and was be used in the proposed paper. The particle swarm optimization algorithm (PSO) is based on adjusting the change speed of the moving particles to a speed of particles movement in the neighborhood. Particle optimization algorithm is one of the computational techniques derived on the basis of swarm behavior such as flocks of birds and schools of fish, which is the basis for the functioning of the exchange of information to enable them to cooperate. It was noticed that the animals in the herd tend to maintain the optimum distance from their neighbors, by appropriate adjustment of their speed. This method allows the synchronous and collision-free motion, often accompanied by sudden changes of direction and due to the rearrangement of the optimal formation. For these algorithms has been prepared the software in Matlab, allowing to optimization of the mathematical models designated on the basis of the carried out identification tests and control parameters used in the mathematical model of the control system.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 46; 97-102
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Particle swarm optimization for tuning PSS-PID controller of synchronous generator
Autorzy:
Derrar, A.
Naceri, A.
Powiązania:
https://bibliotekanauki.pl/articles/384775.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
synchronous generator
PSS
particle swarm optimization (PSO)
PID controller
Opis:
In this paper the design an optimal PSS-PID controller for single machine connected to an infinite bus (SMIB). We presented a novel application of particle swarm optimization (PSO) for the optimal tuning of the new PSS-PID controller. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The synchronous generator is modeled and the PSO algorithm is implemented in Simulink of Matlab. The obtained results have proved that (PSO) are a powerful tools for optimizing the PSS parameters, and more robustness of the system IEEE SMIB.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2017, 11, 1; 48-52
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative Study of Particle Swarm Optimization and Genetic Algorithms for Complex Mathematical Functions
Autorzy:
Valdez, F.
Melin, P.
Powiązania:
https://bibliotekanauki.pl/articles/384575.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
genetic algorithms
particle swarm optimization (PSO)
hybrid systems
optimization
Opis:
The Particle Swarm Optimization (PSO) and the Genetic Algorithms (GA) have been used successfully in solving problems of optimization with continuous and combinatorial search spaces. In this paper the results of the application of PSO and GAs for the optimization of mathematical functions are presented. These two methodologies have been implemented with the goal of making a comparison of their performance in solving complex optimization problems. This paper describes a comparison between a GA and PSO for the optimization of complex mathematical functions.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2008, 2, 1; 43-51
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Particle Swarm Optimization Fuzzy Systems for the Age Reduction Imperfect Maintenance Model
Autorzy:
Li, Che-Hua
Powiązania:
https://bibliotekanauki.pl/articles/301843.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
imperfect maintenance
preventive maintenance
reliability
fuzzy modeling
particle swarm optimization (PSO)
Opis:
This research includes two topics: (1) the modeling of periodic preventive maintenance policies over an infi nite time span for repairable systems with the reduction of the degradation rate after performing an imperfect preventive maintenance (PM) activity; (2) the parameter estimation of failure distribution and the restoration effect of PM from the proposed PM policy for deteriorating systems. The concept of the improvement factor method is applied to measure the restoration effect on the degradation rate for a system after each PM. An improvement factor is presented as a function of the system's age and the cost of each PM. A periodic PM model is then developed. The optimal PM interval and the optimal replacement time for the proposed model can be obtained by minimizing the objective functions of the cost rate through the algorithms provided by this research. An example of using Weibull failure distribution is provided to investigate the proposed model. The method is proposed to estimate the parameters of the failure process and the improvement effect after each PM by analyzing maintenance and failure log data. In this method, a PSO-based method is proposed for automatically constructing a fuzzy system with an appropriate number of rules to approach the identifi ed system. In the PSO-based method, each individual in the population is constructed to determine the number of fuzzy rules and the premise part of the fuzzy system, and then the recursive least-squares method is used to determine the consequent part of the fuzzy system constructed by the corresponding individual. Consequently, an individual corresponds to a fuzzy system. Subsequently, a fi tness function is defi ned to guide the searching procedure to select an appropriate fuzzy system with the desired performance. Finally, two identifi cation problems of nonlinear systems are utilized to illustrate the effectiveness of the proposed method for fuzzy modeling.
Źródło:
Eksploatacja i Niezawodność; 2008, 4; 28-34
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Particle swarm optimization and discrete artificial bee colony algorithms for solving production scheduling problems
Autorzy:
Witkowski, Tadeusz
Powiązania:
https://bibliotekanauki.pl/articles/298169.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Warmińsko-Mazurski w Olsztynie
Tematy:
Discrete Artificial Bee Colony
particle swarm optimization (PSO)
production scheduling problem
makespan
Opis:
This paper shows the use of Discrete Artificial Bee Colony (DABC) and Particle Swarm Optimization (PSO) algorithm for solving the job shop scheduling problem (JSSP) with the objective of minimizing makespan. The Job Shop Scheduling Problem is one of the most difficult problems, as it is classified as an NP-complete one. Stochastic search techniques such as swarm and evolutionary algorithms are used to find a good solution. Our objective is to evaluate the efficiency of DABC and PSO swarm algorithms on many tests of JSSP problems. DABC and PSO algorithms have been developed for solving real production scheduling problem too. The experiment results indicate that this problem can be effectively solved by PSO and DABC algorithms.
Źródło:
Technical Sciences / University of Warmia and Mazury in Olsztyn; 2019, 22(1); 61-74
1505-4675
2083-4527
Pojawia się w:
Technical Sciences / University of Warmia and Mazury in Olsztyn
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of composite load model parameters using improved particle swarm optimization
Autorzy:
Regulski, P.
Gonzalez-Longatt, F.
Terzija, V.
Powiązania:
https://bibliotekanauki.pl/articles/410557.pdf
Data publikacji:
2012
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
load modeling
parameter estimation
particle swarm optimization (PSO)
composite load model
Opis:
Power system loads are one of its crucial elements to be modeled in stability studies. However their static and dynamic characteristics are very often unknown and usually changing in time (daily, weekly, monthly and seasonal variations). Taking this into account, a measurement-based approach for determining the load characteristics seems to be the best practice, as it updates the parameters of a load model directly from the system measurements. To achieve this, a Parameter Estimation tool is required, so a common approach is to incorporate the standard Nonlinear Least Squares, or Genetic Algorithms, as a method providing more global capabilities. In this paper a new solution is proposed -an Improved Particle Swarm Optimization method. This method is an Artificial Intelligence type technique similar to Genetic Algorithms, but easier for implementation and also computationally more efficient. The paper provides results of several experiments proving that the proposed method can achieve higher accuracy and show better generalization capabilities than the Nonlinear Least Squares method. The computer simulations were carried out using a one-bus and an IEEE 39-bus test system.
Źródło:
Present Problems of Power System Control; 2012, 2; 41-51
2084-2201
Pojawia się w:
Present Problems of Power System Control
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The multi-constrained multicast routing improved by hybrid bacteria foraging-particle swarm optimization
Autorzy:
Sahoo, Satya Prakash
Kabat, Manas Ranjan
Powiązania:
https://bibliotekanauki.pl/articles/305674.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
QoS routing
multicasting
bacteria foraging optimization
particle swarm optimization (PSO)
Opis:
To solve multicast routing under multiple constraints, it is required to generate a multicast tree that ranges from a source to the destinations with minimum cost subject to several constraints. In this paper, PSO has been embedded with BFO to improve the convergence speed and avoid premature convergence that will be used for solving QoS multicast routing problem. The algorithm proposed here generates a set of delay compelled links to every destination present in the multicast group. Then the Bacteria Foraging Algorithm (BFA) selects the paths to all the destinations sensibly from the set of least delay paths to construct a multicast tree. The robustness of the algorithm being proposed had been established through the simulation. The efficiency and effectiveness of the algorithm being proposed was validated through the comparison study with other existing meta-heuristic algorithms. It shows that our proposed algorithm IBF-PSO outperforms its competitive algorithms.
Źródło:
Computer Science; 2019, 20 (2); 245-269
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unsupervised classification and particle swarm optimization
Klasyfikacja nienadzorowana i optymalizacja rojem cząstek
Autorzy:
Truszkowski, A.
Topczewska, M.
Powiązania:
https://bibliotekanauki.pl/articles/341179.pdf
Data publikacji:
2012
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
klasyfikacja nienadzorowana
analiza skupień
optymalizacja rojem cząstek
unsupervised classification
clustering
particle swarm optimization (PSO)
Opis:
This article considers three algorithms of unsupervised classification -K-means, Gbest and the Hybrid method, the last two have been proposed in [14]. All three algorithms belong to the class of non-hierarchical methods. At first, the initial split of objects into known in advance number of classes is performed. If it is necessary, some objects are then moved into other clusters to achieve better split - between cluster variation should be much larger than within cluster variation. The first algorithm described in this paper (K-means) is wellknown classical method. The second one (Gbest) is based on the particle swarm intelligence idea. While the third is a hybrid of two mentioned algorithms. Several indices assessing the quality of obtained clusters are calculated.
W niniejszym artykule porównywane są trzy algorytmy analizy skupień - metoda k-średnich, algorytm gbest oraz metoda hybrydowa. Algorytmy gbest oraz hybrydowy zostały zaproponowane w publikacji [14]. Wszystkie trzy metody nalezą a do rodziny metod niehierarchicznych, w których na początku tworzony jest podział obiektów na znaną z góry liczbę klastrów. Następnie, niektóre obiekty przenoszone są pomiędzy klastrami, by uzyskać jak najlepszy podział - wariancja pomiędzy skupieniami powinna być znacznie większa niż wariancja wewnątrz skupień. Pierwszy algorytm (k-means) jest znaną, klasyczną metodą. Drugi oparty jest na idei inteligencji roju cząstek. Natomiast trzeci jest metodą hybrydową łączącą dwa wymienione wcześniej algorytmy. Do porównania uzyskanych skupień wykorzystano kilka różnych indeksów szacujących jakość otrzymanych skupień.
Źródło:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka; 2012, 9; 119-132
1644-0331
Pojawia się w:
Zeszyty Naukowe Politechniki Białostockiej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the hybridization of the artificial Bee Colony and Particle Swarm Optimization Algorithms
Autorzy:
El-Abd, M.
Powiązania:
https://bibliotekanauki.pl/articles/91658.pdf
Data publikacji:
2012
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
Artificial Bee Colony Algorithm
ABC
particle swarm optimization (PSO)
PSO
hybridization
hybrid algorithm
CEC05
Opis:
In this paper we investigate the hybridization of two swarm intelligence algorithms; namely, the Artificial Bee Colony Algorithm (ABC) and Particle Swarm Optimization (PSO). The hybridization technique is a component-based one, where the PSO algorithm is augmented with an ABC component to improve the personal bests of the particles. Three different versions of the hybrid algorithm are tested in this work by experimenting with different selection mechanisms for the ABC component. All the algorithms are applied to the well-known CEC05 benchmark functions and compared based on three different metrics, namely, the solution reached, the success rate, and the performance rate.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2012, 2, 2; 147-155
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence
Autorzy:
Li, C.
Chiang, T. W.
Powiązania:
https://bibliotekanauki.pl/articles/331280.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
zbiór rozmyty
system neuronowo-rozmyty
optymalizacja rojem cząstek
szereg czasowy
complex fuzzy set
complex neuro fuzzy system
hierarchical multi swarm
particle swarm optimization (PSO)
recursive least squares estimator
time series forecasting
Opis:
Financial investors often face an urgent need to predict the future. Accurate forecasting may allow investors to be aware of changes in financial markets in the future, so that they can reduce the risk of investment. In this paper, we present an intelligent computing paradigm, called the Complex Neuro-Fuzzy System (CNFS), applied to the problem of financial time series forecasting. The CNFS is an adaptive system, which is designed using Complex Fuzzy Sets (CFSs) whose membership functions are complex-valued and characterized within the unit disc of the complex plane. The application of CFSs to the CNFS can augment the adaptive capability of nonlinear functional mapping, which is valuable for nonlinear forecasting. Moreover, to optimize the CNFS for accurate forecasting, we devised a new hybrid learning method, called the HMSPSO-RLSE, which integrates in a hybrid way the so-called Hierarchical Multi-Swarm PSO (HMSPSO) and the well known Recursive Least Squares Estimator (RLSE). Three examples of financial time series are used to test the proposed approach, whose experimental results outperform those of other methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 787-800
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Particle swarm optimization of artificial-neural-network-based on-line trained speed controller for battery electric vehicle
Autorzy:
Ufnalski, B.
Grzesiak, L.
Powiązania:
https://bibliotekanauki.pl/articles/201631.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
electric vehicle
speed control
adaptive ANN controller
particle swarm optimization (PSO)
Opis:
The paper presents implementation of PSO (Particle Swarm Optimization) to ANN-based speed controller tuning. Selected learning parameters are optimized according to the control objective function. A battery electric vehicle is considered as a potential plant for an adaptive speed controller. The need for adaptivity in the control algorithm is justified by variations of a total weight of the vehicle. A sizable section of the paper deals with selection of a combined objective function able to effectively evaluate the quality of a solution.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2012, 60, 3; 661-667
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algorytmy stadne w problemach optymalizacji
Swarm Algorithms in Optimization Problems
Autorzy:
Filipowicz, B.
Kwiecień, J.
Powiązania:
https://bibliotekanauki.pl/articles/274567.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
optymalizacja nieliniowa
algorytm PSO
algorytm pszczeli
algorytm świetlika
nonlinear optimization
particle swarm optimization (PSO)
bee algorithm
firefly algorithm
Opis:
W artykule przedstawiono zastosowanie algorytmu optymalizacji rojem cząstek, algorytmu pszczelego i algorytmu świetlika do wyznaczenia optymalnego rozwiązania wybranych testowych funkcji ciągłych. Przedstawiono i porównano wyniki badań dla funkcji Rosenbrocka, Rastrigina i de Jonga.
This paper presents particle swarm optimization, bee algorithm and firefly algorithm, used for optimal solution of selected continuous well-known functions. Results of these algorithms are compared to each other on Rosenbrock, Rastrigin and de Jong functions.
Źródło:
Pomiary Automatyka Robotyka; 2011, 15, 12; 152-157
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid PSO approach for solving non-convex optimization problems
Autorzy:
Ganesan, T.
Vasant, P.
Elamvazuthy, I.
Powiązania:
https://bibliotekanauki.pl/articles/229756.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Kuhn-Tucker conditions (KT)
non-convex optimization
particle swarm optimization (PSO)
semi-classical particle swarm optimization (SPSO)
Opis:
The aim of this paper is to propose an improved particle swarm optimization (PSO) procedure for non-convex optimization problems. This approach embeds classical methods which are the Kuhn-Tucker (KT) conditions and the Hessian matrix into the fitness function. This generates a semi-classical PSO algorithm (SPSO). The classical component improves the PSO method in terms of its capacity to search for optimal solutions in non-convex scenarios. In this work, the development and the testing of the refined the SPSO algorithm was carried out. The SPSO algorithm was tested against two engineering design problems which were; ‘optimization of the design of a pressure vessel’ (P1) and the ‘optimization of the design of a tension/compression spring’ (P2). The computational performance of the SPSO algorithm was then compared against the modified particle swarm optimization (PSO) algorithm of previous work on the same engineering problems. Comparative studies and analysis were then carried out based on the optimized results. It was observed that the SPSO provides a better minimum with a higher quality constraint satisfaction as compared to the PSO approach in the previous work.
Źródło:
Archives of Control Sciences; 2012, 22, 1; 87-105
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies