Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "advanced oxidation process" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Pretreatment of Stabilized Landfill Leachate Using Ozone
Autorzy:
Kwarciak-Kozłowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/124499.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
landfill leachate
ozonation
hydrogen peroxide
ultrasonic field
advanced oxidation process
Opis:
The paper presents the possibility of using the ozonation process in landfill leachate pretreatment. The study was conducted in three stages. In the first stage, the landfill leachate was subjected only to the ozone, with the dose varying from 10 mg/dm3 to 40 mg/dm3. As part of this stage of research, the effect of changes in the pH of wastewater undergoing the process of ozonation on the efficiency of TOC removal was examined. For all the tested pH values (pH = 3.5, pH = 7 pH = 8.5 pH = 10), the TOC removal rate constant (kRowo) during ozonization was determined. In the second stage of the study, the ozonation process was facilitated by UV radiation. Additionally in this stage, the rate of generation of OH• radicals was accelerated by the addition of hydrogen peroxide to the reactor. The COD: H2O2 ratio by weight was 1:2.5, 1:5 and 1:10 and 1:20. In the last stage of the study, we attempted to assist the ozonation process using ultrasonic field. The employed vibration amplitude amounted to 25μm and sonication time equalled 300 seconds. It was found that the ozonation process is the most effective at alkaline pH (8.5). The TOC removal efficiency was 37% (346 mg/dm3) after 60 minutes of ozonation. The best results of pollutants oxidation measured as COD and TOC removal were observed when the dose of ozone was 20 mg/dm3. The combination of sonication and ozonation has resulted in a reduction of COD and TOC values by 370 mg/dm3 and 126 mg/3, respectively, in comparison to the ozonation process alone. It was found that the most effective process in landfill leachate treatment is the combination of ozonation with hydrogen peroxide addition (COD:H2O2=1:10). The COD, TOC and BOD values were 65%, 62% and 36% lower, respectively, in comparison to ozonation process conducted alone.
Źródło:
Journal of Ecological Engineering; 2018, 19, 5; 186-193
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Transformation of Traditional Wastewater Treatment Methods into Advanced Oxidation Processes and the Role of Ozonation
Autorzy:
Nikbeen, Tamana
Nayab, Ahmad Khalid
Powiązania:
https://bibliotekanauki.pl/articles/24201749.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
wastewater treatment
traditional oxidation method
ozonation
advanced oxidation process
disinfection by-product
micropollutants
Opis:
Technology advancement improves the quality of life, however, it might also introduce new pollutants to the ecosystem, which needs to deal with for the goal of a sustainable ecosystem. Municipal and industrial wastewater has always been important in improving the quality of life while maintaining the sustainability of our planet simultaneously. The diversity of pollutants in wastewater requires more advanced and demanding treatment processes. The ozonation, as a crucial part of the advanced oxidation processes, is a superior oxidation method compared to traditional oxidation methods. After the recognition of ozone as GRAS (generally recognized as safe), its applications have diversified and is used currently for microbial inactivation, degradation of recalcitrant organic compounds, removal of a diverse range of micropollutants, solubilization and reduction of sludge, and removal of color and odor components in wastewaters treatment processes. However, some considerable challenges still exist towards its universal application, such as high ozone generation costs, diversity of pollutants, and formation of ozonation by-products, which still require further studies. The main theme of this review paper is the transformation of traditional oxidation methods into advanced oxidation processes and the role of ozonation in this regard, including its applications, by-products, and its comparison with the traditional oxidation methods and advanced oxidation processes.
Źródło:
Journal of Ecological Engineering; 2023, 24, 6; 173--189
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie procesu ozonowania w oczyszczaniu ścieków koksowniczych
The Use of Ozonation Process in Coke Wastewater Treatment
Autorzy:
Kwarciak-Kozłowska, A.
Krzywicka, A.
Gałwa-Widera, M.
Powiązania:
https://bibliotekanauki.pl/articles/1818115.pdf
Data publikacji:
2016
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
ścieki koksownicze
ozonowanie
zaawansowane metody utleniania
coke wastewater
ozonation
advanced oxidation process
Opis:
The paper presents presents the possibility of using the ozonation process in coke wastewater treatment. The wastewater produced during processing of coke was initially pre-treated mechanically in order to remove solid impurities, oils and tar substances. The raw wastewater was characterized by the phenolic odor, brown color and alkaline pH (pH 9.2). The COD value of raw wastewater was 8100 mg/dm3 and the value of BOD was very low (180 mg/dm3). A high concentration of total nitrogen (2420 mg/dm3) and TOC (2240 mg/dm3) was also noted. The study was conducted in three stages. In the first stage, coking wastewater was treated only by ozone, the dose of which varied from 10 mg/dm3 to 40 mg/dm3. The effect of pH during ozonation process was determined on TOC removal efficiency. For all of the pH values (pH = 3.5, pH = 7, pH = 8.5 and pH = 11.5) the TOC removal rate constant was determined. In the second stage, the rate OH radicals generation was accelerated by the addition of hydrogen peroxide to the reactor. The ratio by weight of COD: H2O2 was 1:2.5, 1:5, 1:10 and 1:20. In the last stage of the study, we attempted to assist the ozonation process with ultrasonic field. The sonication time was 8 minutes and the amplitude was 61.5 μm. It was found that the ozonation process is the most effective at alkaline pH (8.5). The TOC removal efficiency was 34% (1470 mg/dm3) after 60 minutes of ozonation. The best results of oxidation of pollutants measured as COD and TOC removal were observed when the dose of ozone was 30 mg/dm3.The combination of sonication and ozonation has resulted in a reduction of COD and TOC values by 1000 mg/dm3 and 300 mg/dm3, respectively, in comparison to ozonation process alone. It was found that the most effective process in coke wastewater treatment is the combination of ozonation with hydrogen peroxide addition (COD:H2O2=1:10). The COD, TOC and BOD value were 54%, 35% and 20% lower, respectively, in comparison to ozonation process conducted alone.
Źródło:
Rocznik Ochrona Środowiska; 2016, Tom 18, cz. 2; 61-73
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies