Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "robust statistics" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Zastosowanie estymacji odpornej w badaniach biegłości laboratorium przy niewielkiej liczbie pomiarów
Application of robust estimation in proficiency testing of laboratory by low number of measurements
Autorzy:
Volodarsky, E. T.
Warsza, Z. L.
Koshevaya, L. A.
Palianychko, D.
Powiązania:
https://bibliotekanauki.pl/articles/153134.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
laboratorium badawcze
precyzja
dokładność
jednorodność wyników
dane odstające
odporna metoda statystyczna
testing laboratory
precision
accuracy
homogeneity of results
outlier
robust statistics
Opis:
W pracy przedstawiono zalety odpornej iteracyjnej metody szacowania wskaźników dokładności pomiarów dla oceny biegłości laboratoriów badawczych do celów akredytacji i okresowej kontroli, w szczególności przy braku próbek wzorcowych i przy niewielkiej liczbie elementów próbki oraz występowaniu danej odstającej. Dotyczy to w szczególności laboratoriów, które muszą przeprowadzać badania niszczące lub o wysokich kosztach pomiarów. Porównano na przykładach liczbowych oceny dokładności otrzymane proponowaną iteracyjną metodą odporną i według procedur standardowych.
Advantages of robust iterative statistical method for estimating the accuracy of performance of testing laboratories during their accreditation in the absence of reference materials and with small sample sizes and outliers are presented in the paper. These situation is observed in the laboratory performing the test with the destruction of the samples or in the case of very expensive testing. A comparison with the estimates obtained by the standard procedure for evaluating performance accuracy is also provided.
Źródło:
Pomiary Automatyka Kontrola; 2013, R. 59, nr 6, 6; 554-557
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metod odpornościowych w analizie dokładności pomiarów międzylaboratoryjnych (1). Zasady statystyki odpornościowej, metoda Hubera czyli Algorytm A
Application of Robust Methods in Evaluation the Accuracy of Interlaboratory Measurements. Part 1. Bases of Robust Statistics. Huber Method, i.e. Algorithm A
Autorzy:
Warsza, Z. L.
Volodarsky, E. T.
Powiązania:
https://bibliotekanauki.pl/articles/276805.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
outlier
niepewność pomiaru
odchylenie standardowe
mediana
odporna wartość średnia
rozstęp międzykwartylowy
outliers
uncertainty of measurements
standard deviation
median
robust mean value
interquartile mid-range
Opis:
W dwuczęściowej pracy omówiono zastosowanie statystyki odpornościowej do oceny wartości i niepewności menzurandu uzyskiwanych na podstawie próbki danych doświadczalnych, gdy niektóre z tych danych różnią się istotnie od pozostałych, czyli są outlierami. Metodami odpornościowymi wyznaczono parametry statystyczne wyniku pomiaru ze wszystkich danych, ale wpływ outlierów potraktowano odmiennie. Dla próbek o niewielkiej liczności uzyskano wyniki bardziej wiarygodne niż w sposób klasyczny z odrzuceniem outlierów. Ilustrują to przykłady z porównań międzylaboratoryjnych. W części 1. omówiono podstawowe zasady statystyki odpornościowej oraz iteracyjną metodę odporną podaną przez Hubera, którą w normie ISO 5725-5 nazwano Algorytm A. Jako ilustrację, w symulowanym przykładzie liczbowym, wyznaczono niepewność procedury pomiarowej testowanej przez porównanie wyników badania jednorodnych obiektów w kilku laboratoriach akredytowanych. Oszacowano średnią niepewność metodą klasyczną dla wszystkich danych. Po usunięciu outlierów zastosowano dwie metody odpornościowe – przeskalowanego odchylenia medianowego MADS i metodę Hubera, czyli iteracyjny Algorytm A, którego wyniki były najbardziej wiarygodne.
This two-part paper discusses the use of robust statistics to assess the value and uncertainty of measurand obtained from a sample of experimental data when some of these data differ significantly from the others, i.e. are outliers. The statistical parameters of the measurement result are determined by robust methods from all data, but influence of outliers is treated differently. For small sample sizes results are more reliable than obtained by classical methods with exclusions of outliers. This is illustrated by examples from the interlaboratory key comparisons. Part 1 discusses the basic principles of the robust statistics and the iterative robust method given by Huber, which is called Algorithm A in ISO 5725-5. As illustration in the simulated numerical example, the uncertainty of some measurement method was estimated based on measurements of homogeneous object in several accredited laboratories. The mean uncertainty of this experiment is estimated by classic method for all data and with exclusion of outliers and by two robust methods: rescaled median deviation and by Algorithm-A. The result of last method is the most reliable.
Źródło:
Pomiary Automatyka Robotyka; 2017, 21, 2; 47-55
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies