Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "różniczkowe" wg kryterium: Temat


Wyświetlanie 1-12 z 12
Tytuł:
Parallel analysis of transient states in electric motor
Równoległa analiza stanów nieustalonych w silniku elektrycznym
Autorzy:
Forenc, J.
Powiązania:
https://bibliotekanauki.pl/articles/157271.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
równania różniczkowe zwyczajne
obliczenia równoległe
stany nieustalone
ordinary differential equations
parallel computing
transient states
Opis:
The analysis of transient states in asynchronous slip-ring motor with the application of the parallel method is presented in the paper. Transient states are described by a system of non-linear ordinary differential equations. Solving systems of such equations is a sequential process. The proposed parallel method converts sequential computations into intensively parallel ones. The general idea of this method is based on decomposition of the integration interval into sub-intervals. Computations in sub-intervals are done based on initial conditions determined on the basis of an approximation of the convergence graph by the exponential function.
W artykule przedstawiono zastosowanie oryginalnej metody równoległej analizy stanów nieustalonych do badania dynamiki modelu silnika asynchronicznego pierścieniowego. Metoda ta przeznaczona jest do analizy stanów nieustalonych występujących w obwodach elektrycznych w przypadku, gdy stan nieustalony opisany jest układem równań różniczkowych zwyczajnych, liniowych lub nieliniowych (równaniem stanu). Ogólna idea metody opiera się na dekompozycji przedziału całkowania (t0, tN) na podprzedziały (rys. 2). Obliczenia zmiennych stanu w poszczególnych podprzedziałach wykonywane są równolegle przy zastosowaniu jednej ze znanych sekwencyjnych, jednokrokowych metod numerycznych rozwiązywania układów równań różniczkowych zwyczajnych. Wykonanie równolegle obliczeń wymaga znajomości wartości zmiennych stanu na początku każdego podprzedziału (warunków początkowych). W chwili t0 wartości te znane są z założenia. W pozostałych podprzedziałach wartości zmiennych stanu wyznaczane są na podstawie przybliżenia wykresu zbieżności rozwiązania sekwencyjnego funkcją wykładniczą (3). Algorytm metody zaimplementowany został w strategii "Master-Slave" (rys. 1). Proces master wyznacza sekwencyjnie wartości zmiennych stanu na początku podprzedziałów i przesyła je do procesów slave. Wszystkie procesy (master i slave) wykonują równolegle obliczenia wartości zmiennych stanu w odpowiednich podprzedziałach przedziału całkowania. Po zakończeniu obliczeń proces master odbiera wyniki obliczeń od procesów slave i zapisuje rozwiązanie końcowe. Jako przykład zastosowania powyższej metody przedstawiona została analiza dynamiki modelu silnika asynchronicznego pierścieniowego. Stan nieustalony w silniku opisany jest układem pięciu nieliniowych równań różniczkowych zwyczajnych (5). Obliczenia przeprowadzone zostały przy zastosowaniu systemu klaster składającego się z 6 stacji roboczych. Podczas obliczeń otrzymano dobre przybliżenie wartości zmiennych stanu na początku każdego podprzedziału, co zapewniło dobrą dokładność rozwiązania końcowego.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 2, 2; 125-128
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modern Taylor series method in numerical integration
Moderní metoda Taylorovy řady v numerické integraci
Autorzy:
Chaloupka, J.
Necasová, G.
Veigend, P.
Kunovský, J.
Šátek, V.
Powiązania:
https://bibliotekanauki.pl/articles/113526.pdf
Data publikacji:
2017
Wydawca:
STE GROUP
Tematy:
Taylor series
ordinary differential equations
technical initial value problems
szereg Taylora
równanie różniczkowe zwyczajne
Opis:
The paper deals with extremely exact, stable, and fast numerical solutions of systems of differential equations. It also involves solutions of problems that can be reduced to solving a system of differential equations. The approach is based on an original mathematical method, which uses the Taylor series method for solving differential equations in a non-traditional way. Even though this method is not much preferred in the literature, experimental calculations have verified that the accuracy and stability of the Taylor series method exceed the currently used algorithms for numerically solving differential equations. The Modern Taylor Series Method (MTSM) is based on a recurrent calculation of the Taylor series terms for each time interval. Thus, the complicated calculation of higher order derivatives (much criticised in the literature) need not be performed but rather the value of each Taylor series term is numerically calculated. An important part of the method is an automatic integration order setting, i.e. using as many Taylor series terms as the defined accuracy requires. The aim of our research is to propose the extremely exact, stable, and fast numerical solver for modelling technical initial value problems that offers wide applications in many engineering areas including modelling of electrical circuits, mechanics of rigid bodies, control loop feedback (controllers), etc.
Clánek se zabývá presným, stabilním a rychlým rešením soustav diferenciálních rovnic. Soustavou diferenciálních rovnic lze reprezentovat velké množství reálných problému. Numerické rešení je založeno na unikátní numerické metode, která netradicne využívá Taylorovu radu. I presto, že tato metoda není v literature príliš preferována, experimentální výpocty potvrdily, že presnost a stabilita této metody presahuje aktuálne používané numerické algoritmy pro numerické rešení diferenciálních rovnic. Moderní metoda Taylorovy rady je založena na rekurentním výpoctu clenu Taylorovy rady v každém casovém intervalu. Derivace vyšších rádu nejsou pro výpocet prímo využity, derivace jsou zahrnuty do clenu Taylorovy rady, které se pocítají rekurentne numericky. Duležitou vlastností metody je automatická volba rádu metody v závislosti na velikosti integracního kroku, tzn. je využito tolik clenu Taylorovy rady, kolik vyžaduje zadaná presnost výpoctu. Cílem výzkumu je navrhnout velmi presný, stabilní a rychlý nástroj pro modelování technických pocátecních problému využitých v praxi pri modelování elektrických obvodu, mechaniky tuhých teles, problematiky zpetnovazebního rízení a další.
Źródło:
Systemy Wspomagania w Inżynierii Produkcji; 2017, 6, 4; 263-273
2391-9361
Pojawia się w:
Systemy Wspomagania w Inżynierii Produkcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laplace-Carson integral transform for exact solutions of non-integer order initial value problems with Caputo operator
Autorzy:
Kumar, Prem
Qureshi, Sania
Powiązania:
https://bibliotekanauki.pl/articles/122736.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
ordinary differential equations
Laplace transform
Riemann-Liouville integral
równanie różniczkowe zwyczajne
transformacja Laplace'a
całka Riemann-Liouville
Opis:
Finding the exact solution to dynamical systems in the field of mathematical modeling is extremely important and to achieve this goal, various integral transforms have been developed. In this research analysis, non-integer order ordinary differential equations are analytically solved via the Laplace-Carson integral transform technique, which is a technique that has not been previously employed to test the non-integer order differential systems. Firstly, it has proved that the Laplace-Carson transform for n-times repeated classical integrals can be computed by dividing the Laplace-Carson transform of the underlying function by n-th power of a real number p which later helped us to present a new result for getting the Laplace-Carson transform for d-derivative of a function under the Caputo operator. Some initial value problems based upon Caputo type fractional operator have been precisely solved using the results obtained thereof.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 57-66
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using Shehu integral transform to solve fractional order Caputo type initial value problems
Autorzy:
Qureshi, Sania
Kumar, Prem
Powiązania:
https://bibliotekanauki.pl/articles/122809.pdf
Data publikacji:
2019
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
ordinary differential equations
Laplace transform
Riemann-Liouville integral
równanie różniczkowe zwyczajne
transformata Laplace'a
całka Riemann-Liouville
Opis:
In the present research analysis, linear fractional order ordinary differential equations with some defined condition (s) have been solved under the Caputo differential operator having order α > 0 via the Shehu integral transform technique. In this regard, we have presented the proof of finding the Shehu transform for a classical nth order integral of a piecewise continuous with an exponential nt h order function which leads towards devising a theorem to yield exact analytical solutions of the problems under investigation. Varying fractional types of problems are solved whose exact solutions can be compared with solutions obtained through existing transformation techniques including Laplace and Natural transforms.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2019, 18, 2; 75-83
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laplace-Carson integral transform for exact solutions of non-integer order initial value problems with Caputo operator
Autorzy:
Kumar, Prem
Qureshi, Sania
Powiązania:
https://bibliotekanauki.pl/articles/1839810.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
ordinary differential equations
Laplace transform
Riemann-Liouville integral
równanie różniczkowe zwyczajne
transformacja Laplace'a
całka Riemann-Liouville
Opis:
Finding the exact solution to dynamical systems in the field of mathematical modeling is extremely important and to achieve this goal, various integral transforms have been developed. In this research analysis, non-integer order ordinary differential equations are analytically solved via the Laplace-Carson integral transform technique, which is a technique that has not been previously employed to test the non-integer order differential systems. Firstly, it has proved that the Laplace-Carson transform for n-times repeated classical integrals can be computed by dividing the Laplace-Carson transform of the underlying function by n-th power of a real number p which later helped us to present a new result for getting the Laplace-Carson transform for d-derivative of a function under the Caputo operator. Some initial value problems based upon Caputo type fractional operator have been precisely solved using the results obtained thereof.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 57-66
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Verified solution method for population epidemiology models with uncertainty
Autorzy:
Enszer, J. A.
Stadtherr, M. A.
Powiązania:
https://bibliotekanauki.pl/articles/930132.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
dynamika nieliniowa
epidemiologia
analiza interwałowa
równanie różniczkowe
nonlinear dynamics
epidemiology
interval analysis
verified computing
ordinary differential equations
Opis:
Epidemiological models can be used to study the impact of an infection within a population. These models often involve parameters that are not known with certainty. Using a method for verified solution of nonlinear dynamic models, we can bound the disease trajectories that are possible for given bounds on the uncertain parameters. The method is based on the use of an interval Taylor series to represent dependence on time and the use of Taylor models to represent dependence on uncertain parameters and/or initial conditions. The use of this method in epidemiology is demonstrated using the SIRS model, and other variations of Kermack-McKendrick models, including the case of time-dependent transmission.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2009, 19, 3; 501-512
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical solving of linear non-homogeneous differential equations of the second-order with constant coefficients by using constant variation method and application of Mathematica program
Rozwiązywanie analityczno-numeryczne liniowych niejednorodnych równań różniczkowych drugiego rzędu o stałych współczynnikach przy użyciu metody wariacji stałej i zastosowaniem programu Mathematica
Autorzy:
Czajkowski, A. A.
Skorny, G. P.
Udała, R.
Powiązania:
https://bibliotekanauki.pl/articles/135888.pdf
Data publikacji:
2017
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
ordinary differential equations
linear non-homogeneous equations of the second order
constant coefficients
variation constant method
solutions analytical
solutions numerical
Mathematica
równania różniczkowe zwyczajne
równania różniczkowe liniowe niejednorodne drugiego rzędu
stałe współczynniki
metoda wariacji stałej
rozwiązania analityczne
rozwiązania numeryczne
Opis:
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the second order with constant coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to show numerical algorithms and graphical interpretation of solutions. Material and methods: For selected equations, from the subject literature, constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the second order with constant coefficients containing exponential, polynomial and trigonometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the second order linear non-homogeneous differential equations. However, using the Mathematica program for numerical solution, you can quickly get a solution and create a graphical interpretation of solutions.
Wstęp i cel: W pracy pokazano algorytmy analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych drugiego rzędu o stałych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznych. Ponadto również dodatkowym celem jest pokazanie algorytmów numerycznych oraz interpretacji graficznej rozwiązań. Materiał i metody: Dla wybranych równań, z literatury przedmiotu, zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne drugiego rzędu o stałych współczynnikach zawierających funkcje wykładnicze, wielomianowe i trygonometryczne. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych drugiego rzędu o stałych współczynnikach. Natomiast wykorzystując do numerycznego rozwiązywania program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić interpretację graficzną rozwiązań.
Źródło:
Problemy Nauk Stosowanych; 2017, 7; 19-30
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical solving of linear non-homogeneous differential Equations of the first-order with constant coefficients by using constant variation method and application of Mathematica program
Rozwiązywanie analityczno-numeryczne liniowych niejednorodnych równań różniczkowych pierwszego rzędu o stałych współczynnikach przy użyciu metody wariacji stałej i zastosowaniem programu Mathematica
Autorzy:
Czajkowski, A. A.
Oleszak, W. K.
Dyrdał, J.
Powiązania:
https://bibliotekanauki.pl/articles/135890.pdf
Data publikacji:
2017
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
ordinary differential equations
linear non-homogeneous equations of the first order
constant coefficients
variation constant method
solutions analytical
solutions numerical
Mathematica
równania różniczkowe zwyczajne
równania różniczkowe liniowe niejednorodne pierwszego rzędu
stałe współczynniki
metoda wariacji stałej
rozwiązania analityczne
rozwiązania numeryczne
Opis:
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the first order with constant coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to show numerical algorithms and graphical interpretation of solutions. Material and methods: For selected equations, from the subject literature, constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the first order with constant coefficients containing exponential, polynomial and trigonometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the first order linear non-homogeneous differential equations. However, using the Mathematica program for numerical solution, you can quickly get a solution and create a graphical interpretation of solutions.
Wstęp i cel: W pracy pokazano algorytmy analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych pierwszego rzędu o stałych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznych. Ponadto również dodatkowym celem jest pokazanie algorytmów numerycznych oraz interpretacji graficznej rozwiązań. Materiał i metody: Dla wybranych równań, z literatury przedmiotu, zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne pierwszego rzędu o stałych współczynnikach zawierających funkcje wykładnicze, wielomianowe i trygonometryczne. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych pierwszego rzędu o stałych współczynnikach. Natomiast wykorzystując do numerycznego rozwiązywania program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić interpretację graficzną rozwiązań.
Źródło:
Problemy Nauk Stosowanych; 2017, 7; 5-18
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel interval arithmetic approach for solving differential-algebraic equations with VALENCIA-IVP
Autorzy:
Rauh, A.
Brill, M.
Günther, C.
Powiązania:
https://bibliotekanauki.pl/articles/930113.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
równanie różniczkowe
symulacja sprawdzona
sterowanie odwrotne
ordinary differential equations
differential algebraic equations
VALENCIA-IVP
verified simulation
inverse control problems
Opis:
The theoretical background and the implementation of a new interval arithmetic approach for solving sets of differential-algebraic equations (DAEs) are presented. The proposed approach computes guaranteed enclosures of all reachable states of dynamical systems described by sets of DAEs with uncertainties in both initial conditions and system parameters. The algorithm is based on VALENCIA-IVP, which has been developed recently for the computation of verified enclosures of the solution sets of initial value problems for ordinary differential equations. For the application to DAEs, VALENCIA-IVP has been extended by an interval Newton technique to solve nonlinear algebraic equations in a guaranteed way. In addition to verified simulation of initial value problems for DAE systems, the developed approach is applicable to the verified solution of the so-called inverse control problems. In this case, guaranteed enclosures for valid input signals of dynamical systems are determined such that their corresponding outputs are consistent with prescribed time-dependent functions. Simulation results demonstrating the potential of VALENCIA-IVP for solving DAEs in technical applications conclude this paper. The selected application scenarios point out relations to other existing verified simulation techniques for dynamical systems as well as directions for future research.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2009, 19, 3; 381-397
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie komputerowe układów prostowniczych jedno- i trójfazowych z obciążeniem RL
Computational modelling one and three-phase rectifier with RL load
Autorzy:
KWATER, Tadeusz
TWARÓG, Bogusław
PĘKALA, Robert
BARTNIK, Karol
Powiązania:
https://bibliotekanauki.pl/articles/455152.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Rzeszowski
Tematy:
modelowanie komputerowe
równania różniczkowe zwyczajne
schematy połączeń obwodów elektrycznych
dioda
tyrystor
przebiegi symulacyjne
computational modelling
ordinary differential equations
scheme electrical circuits
diode
thyristor
simulation waveforms
Opis:
W artykule przedstawiono problematykę dotyczącą modelowania komputerowego układów prostowniczych jedno- i trójfazowych z obciążeniem typu RL. Podano założenia upraszczające oraz schematy połączeń elektrycznych i odpowiadające im równania różniczkowe zwyczajne. Zamieszczono rezultaty eksperymentów numerycznych potwierdzających ich zgodność z przebiegami rzeczywistymi
This paper presents issues concerning computational modelling systems one and three-phase rectifier with a load RL. Given the simplifying assumptions and the wiring diagrams and the corresponding ordinary differential equations. Contains the results of numerical experiments confirming their compliance with the actual waveforms
Źródło:
Edukacja-Technika-Informatyka; 2013, 4, 2; 351-357
2080-9069
Pojawia się w:
Edukacja-Technika-Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical solving of linear non-homogeneous differential equations of the first-order with changeable coefficients by using constant variation method and application of Mathematica program
Rozwiązywanie analityczno-numeryczne liniowych niejednorodnych równań różniczkowych pierwszego rzędu o zmiennych współczynnikach przy użyciu metody wariacji stałej i zastosowaniu programu Mathematica
Autorzy:
Czajkowski, A. A.
Oleszak, W. K.
Dyrdał, J.
Powiązania:
https://bibliotekanauki.pl/articles/135982.pdf
Data publikacji:
2018
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
ordinary differential equations
linear equations
homogeneous equations
equations of the first order
changeable coefficients
variation constant method
analytical solution
numerical solution
Mathematica
równania różniczkowe zwyczajne
równania liniowe
równania niejednorodne
równania pierwszego rzędu
zmienne współczynniki
metoda wariacji stałej
rozwiązanie analityczne
rozwiązanie numeryczne
Opis:
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the first order with changeable coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to show numerical algorithms and graphical interpretation of solutions. Material and methods: Some selected equations have been chosen from the subject literature. In the solutions the constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the first order with changeable coefficients containing exponential, logarithmic, trigonometric and cyclometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the first order linear nonhomogeneous differential equations with changeable coefficients. Using the Mathematica program it is possible quickly get a solution and create its graphical interpretation.
Wstęp i cel: W pracy pokazano algorytmy analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych pierwszego rzędu o zmiennych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznym. Ponadto również dodatkowym celem jest pokazanie algorytmów numerycznych oraz interpretacji graficznej rozwiązań. Materiał i metody: Wybrane równania zaczerpnięto z literatury przedmiotu. W rozwiązaniach równań zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne pierwszego rzędu o zmiennych współczynnikach zawierających funkcje wykładnicze, logarytmiczne, trygonometryczne i arcus. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych pierwszego rzędu o zmiennych współczynnikach. Wykorzystując program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić jego interpretację graficzną.
Źródło:
Problemy Nauk Stosowanych; 2018, 8; 5-20
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical solving of linear non-homogeneous differential equations of the second-order with changeable coefficients by using constant variation method and application of Mathematica program
Rozwiązywanie analityczno-numeryczne liniowych niejednorodnych równań różniczkowych drugiego rzędu o zmiennych współczynnikach przy użyciu metody wariacji stałej i zastosowaniu programu Mathematica
Autorzy:
Czajkowski, A. A.
Oleszak, W. K.
Skorny, G. P.
Udała, R.
Powiązania:
https://bibliotekanauki.pl/articles/135822.pdf
Data publikacji:
2018
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
ordinary differential equations
linear equations
homogeneous equations
equations of the second order
changeable coefficients
variation constant method
analytical solution
numerical solution
Mathematica
równania różniczkowe zwyczajne
równania liniowe
równania niejednorodne
równania drugiego rzędu
zmienne współczynniki
metoda wariacji stałej
rozwiązanie analityczne
rozwiązanie numeryczne
Opis:
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the second order with changeable coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to make some graphical interpretation of solutions. Material and methods: Some selected equations have been chosen from the subject literature. In the solutions the constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the second order with constant coefficients containing linear, homographic, logarithmic and trigonometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the second order linear non-homogeneous differential equations with changeable coefficients. Using the Mathematica program it is possible quickly get a solution and create its graphical interpretation.
Wstęp i cel: W pracy pokazano algorytm analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych drugiego rzędu o zmiennych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznym. Ponadto dodatkowym celem jest interpretacji graficznej rozwiązań. Materiał i metody: Wybrane równania zaczerpnięto z literatury przedmiotu. W rozwiażanich równań zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne drugiego rzędu o zmiennych współczynnikach zawierających funkcje liniowe, homograficzne, logarytmiczne i trygonometryczne. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych drugiego rzędu o zmiennych współczynnikach. Wykorzystując program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić jego interpretację graficzną.
Źródło:
Problemy Nauk Stosowanych; 2018, 8; 21-38
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies