Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "SWARM (system)" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence
Autorzy:
Li, C.
Chiang, T. W.
Powiązania:
https://bibliotekanauki.pl/articles/331280.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
zbiór rozmyty
system neuronowo-rozmyty
optymalizacja rojem cząstek
szereg czasowy
complex fuzzy set
complex neuro fuzzy system
hierarchical multi swarm
particle swarm optimization (PSO)
recursive least squares estimator
time series forecasting
Opis:
Financial investors often face an urgent need to predict the future. Accurate forecasting may allow investors to be aware of changes in financial markets in the future, so that they can reduce the risk of investment. In this paper, we present an intelligent computing paradigm, called the Complex Neuro-Fuzzy System (CNFS), applied to the problem of financial time series forecasting. The CNFS is an adaptive system, which is designed using Complex Fuzzy Sets (CFSs) whose membership functions are complex-valued and characterized within the unit disc of the complex plane. The application of CFSs to the CNFS can augment the adaptive capability of nonlinear functional mapping, which is valuable for nonlinear forecasting. Moreover, to optimize the CNFS for accurate forecasting, we devised a new hybrid learning method, called the HMSPSO-RLSE, which integrates in a hybrid way the so-called Hierarchical Multi-Swarm PSO (HMSPSO) and the well known Recursive Least Squares Estimator (RLSE). Three examples of financial time series are used to test the proposed approach, whose experimental results outperform those of other methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 787-800
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Coordinated control of phase shifting transformers in the power system
Skoordynowane sterowanie przesuwnikami fazowymi w systemie elektroenergetycznym
Autorzy:
Korab, R.
Owczarek, R.
Połomski, M.
Powiązania:
https://bibliotekanauki.pl/articles/397322.pdf
Data publikacji:
2017
Wydawca:
ENERGA
Tematy:
power system
phase shifting transformer
unscheduled flow
particle swarm optimisation
system elektroenergetyczny
przesuwnik fazowy
przepływ nieplanowy
optymalizacja rojem cząstek
Opis:
In response to the growing problem of unscheduled flows, more and more transmission system operators in Europe provide their systems with phase shifting transformers (PST). However, the operations of several PSTs deployed close to each other must be coordinated for them to be effective and to avoid their harmful interactions. Coordination of a group of such devices leads to a problem of multidimensional optimisation. This paper presents a method of optimal PST setting based on the particle swarm optimisation (PSO) algorithm. As an optimisation criterion the minimization of unscheduled flow through the given system has been applied. The impact of the number of particles in the swarm and their maximum permissible velocity on the optimisation algorithm’s efficiency was analysed. Results are presented for a 118-node test grid.
W odpowiedzi na rosnący problem przepływów nieplanowych coraz większa liczba operatorów systemów przesyłowych w Europie wyposaża swoje systemy w przesuwniki fazowe (PST). Jednakże użycie kilku PST zainstalowanych geograficznie lub elektrycznie blisko siebie musi być skoordynowane w celu skutecznego wykorzystania tych urządzeń i uniknięcia ich niekorzystnych interakcji. Koordynacja grupy takich urządzeń prowadzi do problemu optymalizacji wielowymiarowej. W artykule przedstawiono metodę optymalizacji nastaw PST opartą na algorytmie roju cząstek (PSO). Jako kryterium optymalizacji zastosowano minimalizację przepływu nieplanowego przez dany system. Przeanalizowano wpływ liczby cząstek roju oraz ich maksymalnej dozwolonej prędkości na efektywność algorytmu optymalizacji. Przedstawiono wyniki dla sieci testowej zawierającej 118 węzłów.
Źródło:
Acta Energetica; 2017, 3; 97-103
2300-3022
Pojawia się w:
Acta Energetica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Feature selection using particle swarm optimization in text categorization
Autorzy:
Aghdam, M. H.
Heidari, S.
Powiązania:
https://bibliotekanauki.pl/articles/91792.pdf
Data publikacji:
2015
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
classification system
feature selection
text categorization
particle swarm optimization (PSO)
system klasyfikacji
wybór funkcji
kategoryzacja tekstu
optymalizacja rojem cząstek
Opis:
Feature selection is the main step in classification systems, a procedure that selects a subset from original features. Feature selection is one of major challenges in text categorization. The high dimensionality of feature space increases the complexity of text categorization process, because it plays a key role in this process. This paper presents a novel feature selection method based on particle swarm optimization to improve the performance of text categorization. Particle swarm optimization inspired by social behavior of fish schooling or bird flocking. The complexity of the proposed method is very low due to application of a simple classifier. The performance of the proposed method is compared with performance of other methods on the Reuters-21578 data set. Experimental results display the superiority of the proposed method.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2015, 5, 4; 231-238
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optymalizacja rojowa nastaw przesuwników fazowych w systemie elektroenergetycznym
Swarm optimization of settings of phase shifting transformers in a power system
Autorzy:
Korab, R.
Owczarek, R.
Połomski, M.
Powiązania:
https://bibliotekanauki.pl/articles/269100.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
power system
phase shifting transformer
particle swarm optimization (PSO)
active power losses
system elektroenergetyczny
przesuwnik fazowy
optymalizacja rojem cząstek
straty mocy czynnej
Opis:
W artykule przedstawiono zastosowanie algorytmu rojowego PSO do optymalizacji nastaw grupy przesuwników fazowych w systemie elektroenergetycznym. Jako kryterium optymalizacji zastosowano minimalizację strat mocy czynnej w sieci testowej IEEE 118. Przeanalizowano wpływ maksymalnej dozwolonej prędkości cząstek na efektywność algorytmu optymalizacji. Wyniki badań pokazują ważność tego parametru.
In response to the growing problem of unscheduled flows, a larger and larger number of transmission system operators in Europe equip their systems with phase shifting transformers (PSTs). PSTs are special transformers which installed in a transmission line enable regulation of the voltage phase angle and thereby change of the active power flow in the line. However, the use of several PSTs installed geographically close to each other must be coordinated in order to efficiently use those devices and avoid their adverse interactions. The coordination of a group of such devices leads to a multidimensional optimization problem. In this paper, the coordination problem was solved by optimization of settings of all analyzed PSTs, based on the swarm algorithm. This approach was examined and tested on an IEEE 118-bus test system. The minimization of active power losses in this system was used as the optimization criterion. The impact of maximum allowed velocity of particles on the effectiveness of the optimization algorithm was analyzed. The result shows that the improved effectiveness of the proposed approach can be obtained by careful selection of this parameter.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2017, 53; 99-102
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies