Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "newton" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Optimal control of partial differential equations with affine control constraints
Autorzy:
Reyes, J. R. de los
Kunisch, K.
Powiązania:
https://bibliotekanauki.pl/articles/1839187.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
optimal control
affine control constraints
semi-smooth Newton methods
Opis:
Numerical solution of PDE optimal control problems involving affine pointwise control constraints is investigated. Optimality conditions are derived and a semi-smooth Newton method is presented. Global and local superlinear convergence of the method are obtained for linear problems. Differently from box constraints, in the case of general affine constraints a proper weighting of the control costs is essential for superlinear convergence of semi-smooth Newton methods. This is also demonstrated numerically by controlling the two-dimensional Stokes equations with different kinds of affine constraints.
Źródło:
Control and Cybernetics; 2009, 38, 4A; 1217-1249
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Two-dimensional Newtons problem of minimal resistance
Autorzy:
Silva, C. J.
Torres, D. F.
Powiązania:
https://bibliotekanauki.pl/articles/969988.pdf
Data publikacji:
2006
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
Newton's problem of minimal resistance
dimension two
calculus of variations
optimal control
Opis:
Newton's problem of minimal resistance is one of the first problems of optimal control: it was proposed, and its solution given, by Isaac Newton in his masterful Principia Mathematica, in 1686. The problem consists of determining, in dimension three, the shape of an axis-symmetric body, with assigned radius and height, which offers minimum resistance when it is moving in a resistant medium. The problem has a very rich history and is well documented in the literature. Of course, at a first glance, one suspects that the two dimensional case should be well known. Nevertheless, we have looked into numerous references and asked at least as many experts on the problem, and we have not been able to identify a single source. Solution was always plausible to everyone who thought about the problem, and writing it down was always thought not to be worthwhile. Here we show that this is not the case: the two-dimensional problem is richer than the classical one, being, in some sense, more interesting. Novelties include: (i) while in the classical three-dimensional problem only the restricted case makes sense (without restriction on the monotonicity of admissible functions the problem does not admit a local minimum), we prove that in dimension two the unrestricted problem is also well-posed when the ratio of height versus radius of base is greater than a given quantity; (ii) while in three dimensions the (restricted) problem has a unique solution, we show that in the restricted two-dimensional problem the minimizer is not always unique - when the height of the body is less or equal than its base radius, there exists infinitely many minimizing functions.
Źródło:
Control and Cybernetics; 2006, 35, 4; 965-975
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metric regularity under approximations
Autorzy:
Dontchev, A. L.
Veliov, V. M.
Powiązania:
https://bibliotekanauki.pl/articles/970750.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
metric regularity
inexact iterative methods
Newton method
proximal point method
discrete approximation
optimal control
Opis:
In this paper we show that metric regularity and strong metric regularity of a set-valued mapping imply convergence of inexact iterative methods for solving a generalized equation associated with this mapping. To accomplish this, we first focus on the question how these properties are preserved under changes of the mapping and the reference point. As an application, we consider discrete approximations in optimal control.
Źródło:
Control and Cybernetics; 2009, 38, 4B; 1283-1303
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Convergence of the Lagrange-Newton Method for Optimal Control Problems
Autorzy:
Malanowski, K. D.
Powiązania:
https://bibliotekanauki.pl/articles/907971.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie optymalne
ograniczenia mieszane
metoda Lagrange'a-Newtona
optimal control
nonlinear ODEs
mixed constraints
Lagrange-Newton method
Opis:
Convergence results for two Lagrange-Newton-type methods of solving optimal control problems are presented. It is shown how the methods can be applied to a class of optimal control problems for nonlinear ODEs, subject to mixed control-state constraints. The first method reduces to an SQP algorithm. It does not require any information on the structure of the optimal solution. The other one is the shooting method, where information on the structure of the optimal solution is exploited. In each case, conditions for well-posedness and local quadratic convergence are given. The scope of applicability is briefly discussed.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2004, 14, 4; 531-540
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of the Lagrange-SQP-Newton method for the control of a phase field equation
Autorzy:
Heinkenschloss, M.
Troeltzsch, F.
Powiązania:
https://bibliotekanauki.pl/articles/206519.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
równania paraboliczne
równania różniczkowe
stabilność
sterowanie optymalne
control constraints
Lagrange-SQP-Newton method
optimal control
phase field equation
programming method
sequential quadratic
Opis:
This paper investigates the local convergence of the Lagrange-SQP-Newton method applied to an optimal control problem governed by a phase field equation with distributed control. The phase field equation is a system of two semilinear parabolic differential equations. Stability analysis of optimization problems and regularity results for parabolic differential equations are used to proof convergence of the controls with respect to the L[sup 2](Q) norm and with respect to the L[sup infinity](Q) norm.
Źródło:
Control and Cybernetics; 1999, 28, 2; 177-211
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies