Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Grosser, A." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Półciągła kofermentacja osadów ściekowych i odpadów tłuszczowych pochodzenia roślinnego
Semi-continuous Anaerobic Co-digestion of Mixed Sewage Sludge and Waste Fats of Vegetable Origin
Autorzy:
Grosser, A.
Worwąg, M.
Neczaj, E.
Grobelak, A.
Powiązania:
https://bibliotekanauki.pl/articles/1819118.pdf
Data publikacji:
2013
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
osady ściekowe
odpady tłuszczowe
grease trap sludge
poultry slaughterhouse waste
organic fraction
acids
degradation
manure
fermentation
inhibition
ammonia
growth
Opis:
Anaerobic digestion (AD) is the most often applied technique for sewage sludge stabilization at medium and large wastewater treatment plants. Nonetheless, the application of AD to sewage sludge stabilization is often limited by long retention time and low VS (volatile solid) removal. For this reason in recent years a number of studies have been focused on optimize anaerobic digestion processes. One of the most interesting options for improving anaerobic digestion yields is co-digestion, namely simultaneous decomposition of a homogenous mixture of at least two biodegradable wastes. Fat-rich materials are attractive substrate for AD due to the high organic matter content of waste and high energetic potential. It is estimated that about 1,014 dm3, methane at STP (standard temperature and pressure) can by produced from 1 g VS lipids, while only 0,415, 0,496 dm3 can be produced respectively from 1 g VS carbohydrate and protein. However, due to inhibitory effect of intermediate compounds (LCFAs – long chain fatty acids) and operational problems, such as: hindrance, sedimentation clogging, scum formation, and flotation of biomass, separate AD of this waste ended with failure. The aim of the current study was to investigate how the co-digestion of fats of vegetable origin (FV) and mixed sewage sludge affected the performance of the anaerobic digestion (AD) process. The process was carried out at mesophilic conditions (37°C) in continuous stirred-tank reactor (CSTR) with working liquid volume equal to 6,5 dm3. The reactors were operated in draw-and fill mode (on a daily basis). The digestion was examined in semi-continuous mode at sludge retention time of 10 days and the organic loading rate maintained in the range 2,24–3,02 g/dm3 d. During the start-up period the digester was fed only sewage sludge. Co-digestion process was initiated after achievement of stable working parameters of bioreactor for sewage sludge digestion. Addition of fat in the feedstock was gradually increased up to 35%. Anaerobic process state indicators such as: biogas production, biogas composition, pH, alkalinity and volatile fatty acids (VFA) were used to monitor a digestion. Furthermore, the LCFAs concentrations were measured in a feed and digested sludge. The results showed that use of FV as a co-substrate adversely affects the efficiency of the process. Comparing digestion of MSS alone with co-digestion of wastes, it was shown that co-digestion resulted in lower biogas production and VS removal. Biogas yields for co-digestion mixtures were between 0,16 and0,32 dm3/g VS added, while volatile solid (VS) removal ranged from 36,75 to 42,65%.However average biogas yield and VS degradation degree observed during fermentation of the MSS(mixed sewage sludge) alone were 0,33 dm3/g VS added and 44%, respectively. Only for biogas composition noted the positive effect of mixed sewage sludge co-fermentation with FV. The study showed that the concentration of ammonia generated in this experiment did not inhibit anaerobic digestion. It was found that oleic acid, which is one of the most toxic long chain fatty acids, was present at concentrations (reached a maximum value of 34,38 mg/g TS) within the ranges for which inhibition of methanogenesis has been reported. This suggests that the low efficiency of the process was probably caused a high concentration of oleic acid.
Źródło:
Rocznik Ochrona Środowiska; 2013, Tom 15, cz. 3; 2108-2125
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Methane production from fat-rich materials
Produkcja metanu z substratów bogatych w tłuszcze
Autorzy:
Worwąg, M.
Neczaj, E.
Grosser, A.
Krzemińska, D.
Powiązania:
https://bibliotekanauki.pl/articles/395749.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
odpady tłuszczowe
kofermentacja
biogaz
fat-rich waste
co-fermentation
production of biogas
Opis:
Waste materials containing a lot of fats seem to be an attractive substrate for production of methane through the fermentation process. Yet, due to a changing content of reagents and the high concentration of higher fatty acids, they must be stabilized along with other biodegradable wastes in the process of co-fermentation. This process results in a higher fermentation-grade and a greater volume of produced biogas. However, the methane fermentation of sewage sludges or sewage containing higher fatty acids may be problematical, and requires widespread studies in order to get a better understanding of this process.
Odpady zawierające wysoką zawartość tłuszczów wydają się najbardziej atrakcyjnym substratem do produkcji metanu w procesie fermentacji. Z uwagi na zmienny skład reagentów oraz znaczne stężenia wyższych kwasów tłuszczowych muszą być one stabilizowane z innymi biodegradowalnymi odpadami w procesie kofermentacji. W procesie kofermentacji dochodzi do rozcieńczenia substancji toksycznych oraz poprawy równowagi nutrientowej. Ponadto obserwuje się wyższy stopień przefermentowania osadów i większą produkcję biogazu. Podczas stabilizacji beztlenowej, tłuszcze w pierwszym etapie są hydrolizowane do wyższych kwasów tłuszczowych oraz glicerolu. W kolejnych fazach wyższe kwasy tłuszczowe oraz glicerol rozkładane są do kwasów lotnych, octanu i wodoru. Mimo, że hydroliza uważana jest za fazę limitującą jeden z etapów konwersji tłuszczy, niektórzy autorzy wskazują iż proces ten zależy od czasu zatrzymania osadu (SRT). Przy SRT poniżej 8 dni dochodzi do akumulacji wyższych kwasów tłuszczowych i inhibicji całego procesu fermentacji. Jednakże fermentacja metanowa osadów ściekowych lub ścieków zawierających tłuszcze na wysokim poziomie może być problematyczna. Główne problemy spowodowane przez tłuszcze podczas stabilizacji beztlenowej to pienienie, flotacja osadów, zapychanie się instalacji oraz nieprzyjemne odory. Tak więc kofermentacja odpadów z dużą zawartością tłuszczy może być problematyczna i wymaga dalszych badań mających na celu wyjaśnienie tego procesu.
Źródło:
Civil and Environmental Engineering Reports; 2011, 6; 147-162
2080-5187
2450-8594
Pojawia się w:
Civil and Environmental Engineering Reports
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies