Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Szymańska, B." wg kryterium: Autor


Wyświetlanie 1-11 z 11
Tytuł:
Heksachlorocyklopentadien
Autorzy:
Szymańska, J.
Frydrych, B.
Powiązania:
https://bibliotekanauki.pl/articles/137584.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
heksachlorocyklopentadien
narażenie zawodowe
NDS
hexachlorocyclopentadiene
occupational exposure
MAC value
Opis:
Heksachlorocyklopentadien (HCCP) jest oleistą cieczą o barwie jasnożółtej i ostrym, drażniącym zapachu. Substancja ta znalazła zastosowanie przede wszystkim jako półprodukt do produkcji: różnych barwników, żywic, farmaceutyków, środków zmniejszających palność, insektycydów i poliestrów. Ponadto jest stosowana do produkcji: ketonów, kwasów, estrów, fluorowęglowodorów i wstrząsoodpornych tworzyw (substancja HPV). Substancja ta znajduje się na liście priorytetowej SCOEL w celu opracowania dokumentacji i wartości wskaźnikowej. Heksachlorocyklopentadien wchłania się do organizmu przez: skórę, układ oddechowy i pokarmowy, a także po podaniu dożylnym. Oznaczanie rozmieszczania tkankowego heksachlorocyklopentadienu wykazało, że największe stężenia związku, niezależnie od drogi podania, oznaczono w wątrobie i nerkach. Głównymi drogami wydalania heksachlorocyklopentadienu z organizmu są mocz i kał. Heksachlorocyklopentadien działa drażniąco na: błony śluzowe oczu i górnych dróg oddechowych oraz skórę. Na podstawie wyników badań toksyczności ostrej na zwierzętach wykazano dużą rozpiętość w wartościach medialnych dawek śmiertelnych. Na podstawie tych danych heksachlorocyklopentadien jest uważany za substancję bardzo toksyczną po narażeniu inhalacyjnym, toksyczną po narażeniu dermalnym i szkodliwą po narażeniu dożołądkowm. Wielokrotne narażenie zwierząt różnych gatunków na heksachlorocyklopentadien podawany różnymi drogami spowodowało zwiększoną liczbę padnięć zwierząt obserwowaną w grupach narażanych oraz wystąpienie wielu objawów klinicznych i zmian histopatologicznych. Na podstawie wyników testów przeprowadzonych w warunkach in vitro i in vivo stwierdzono, że heksachlorocyklopentadien nie wykazuje działania mutagennego ani genotoksycznego. Również na podstawie wyników uzyskanych w doświadczeniach dotyczących działania rakotwórczego heksachlorocyklopentadien nie jest uważany za substancję o działaniu kancerogennym. Do wyliczenia wartości najwyższego dopuszczalnego stężenia (NDS) przyjęto wartość NOAEL równą 1,7 mg/m3 wyznaczoną dla heksachlorocyklopentadienu w dwóch inhalacyjnych eksperymentach przeprowadzonych na szczurach. Wyliczona na tej podstawie wartość NDS wynosi 0,1 mg/m3. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz dopuszczalnego stężenia w materiale biologicznym (DSB) heksachlorocyklopentadienu.
Hexachlorocyclopentadiene (HCCP) is an oily liquid with a light yellow color and a pungent odor. This compound is used primarily as an intermediate for the manufacture of various dyes, resins, pharmaceuticals, flame retardants, insecticides, and polyesters. It is also used to produce ketones, acids, esters, fluorocarbons, and shockproof plastics. HCCP is absorbed into the body through the skin, respiratory and digestive tract as well as after intravenous administration. Determination of tissue HCCP deployment showed that the highest concentrations were related to liver and kidney, regardless of route of administration. The main routes of excretion are the urine and feces. HCCP is irritating to mucous membranes of the eyes and upper respiratory tract and skin. Acute toxicity studies in animals have shown a large span media in the values of the lethal dose. From the available data, it can be concluded that HCCP is harmful after acute oral exposure, toxic after acute dermal exposure and very toxic after inhalatory exposure. Repeated exposure of animals of different species to HCCP administered by various routes resulted in increased mortality observed in the exposed groups and the occurrence of a number of clinical signs and histopathological changes.The results of tests carried out in vitro and in vivo indicate that the HCCP is not mutagenic or genotoxic. Moreover, because of the results obtained in experiments on the carcinogenicity, HCCP is not regarded as a substance with carcinogenic activity. The MAC (TWA) value for HCCP was calculated on the basis of NOAEL value 1.7 mg/m3 obtained as a result of an inhalation experiment. The recommended 8-hour TWA is 0.1 mg/m3.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 4 (74); 41-67
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
3,7-Dimetylookta -2,6-dienal (cytral)
3,7-Dimethyl-2,6-octadienal (citral)
Autorzy:
Szymańska, A.
Frydrych, B
Powiązania:
https://bibliotekanauki.pl/articles/137856.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
cytral
narażenie zawodowe
NDS
citral
occupational exposure
MAC value
Opis:
3,7-Dimetylookta-2,6-dienal (cytral) jest to oleista ciecz o barwie bladożółtej i intensywnym cytrynowym zapachu. Związek ten jest mieszaniną dwóch izomerów – geranialu i neralu występujących w stosunku 2: 1. Cytral jest uzyskiwany przez frakcyjną destylację z trawy cytrynowej, której jest naturalnym składnikiem, bądź na drodze syntezy z izoprenu, geraniolu, nerolu lub linalolu. Stosowany jest wszechstronnie w przemyśle chemicznym i spożywczym, o czym świadczy wielkość produkcji (substancja HPV). W dostępnym piśmiennictwie nie znaleziono opisu klinicznego zatrucia ostrego czy przewlekłego cytralem u ludzi. Udowodniono natomiast, że związek ten w kontakcie ze skórą wykazuje działanie drażniące i/lub uczulające. Na podstawie wyników doświadczeń na zwierzętach (szczury i myszy) wykazano, że cytral jest substancją o małej toksyczności ostrej. Skutkiem przewlekłego, dożołądkowego narażenia zwierząt na cytral było: zahamowanie przyrostu masy ciała, hepatomegalia z hiperplazją i hipertrofią, wzrost aktywności cytochromu P-450 oraz uszkodzenie przedżołądka. Szkodliwe działanie cytralu manifestujące się m.in.: zmniejszeniem przyrostu masy ciała, trudnościami w oddychaniu i pojawieniem się wydzieliny nosowej, zaobserwowano również po inhalacyjnym narażeniu szczurów (ciężarnych samic).Dane otrzymane z badań, w których zastosowano testy bakteryjne, pozwalają stwierdzić, że cytral nie wykazuje działania mutagennego ani działania genotoksycznego. Na podstawie wyników badań nad rakotwórczym działaniem cytralu związek ten został zaklasyfikowany przez ACGIH do grupy A4, czyli do substancji nieklasyfikowanych jako czynniki rakotwórcze dla człowieka. Cytral wchłania się przez: skórę, płuca i drogę pokarmową. Metabolizowany jest na drodze redukcji lub hydratacji podwójnego wiązania, oksydacji grupy aldehydowej lub węgla C-8 i C-9. Główną drogą wydalania powstałych metabolitów jest mocz. Mechanizm działania toksycznego cytralu jest związany z hamowaniem aktywności dehydrogenazy aldehydowej. Za skutek krytyczny działania toksycznego cytralu przyjęto działanie drażniące na górne drogi oddechowe, które obserwowano u ciężarnych samic szczurów po narażeniu inhalacyjnym na cytral. Na podstawie danych z badań doświadczalnych zaproponowano przyjęcie stężenia 27 mg/m3 cytralu za wartość najwyższego dopuszczalnego stężenia (NDS) związku, a ze względu na jego działanie drażnią-ce przyjęcie stężenia 54 mg/m3 (2 razy wartość NDS) za wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh). Normatywy oznakowano literami: „I” – substancja o działaniu drażniącym oraz „A” – substancja o działaniu uczulającym. Nie ma podstaw merytorycznych do ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) cytralu.
3,7-Dimethyl-2,6-octadienal (citral CAS No. 5392-40-5) is a naturally aliphatic aldehyde of the terpene series and is an isomeric mixture of geranial and neral. It is the main component of lemon grass oil, which is found in all citrus fruits and used extensively in the food, cosmetic, and detergent industries. Citral is extracted from lemon grass oil by fractional distillation and also synthesized by oxidation of geraniol, nerol, or linalool. It is a mobile, pale yellow liquid with a strong lemon odor. In the available literature there are no data on toxicity in humans. Citral is such a common allergenin hand eczema patients due to the combined effects of allergic and irritant properties. Acute toxicity of citral is low in rodents because the oral or dermal LD50 valkues are over 1000 mg/kg. Seven bacterial reverse mutation studies indicate negative results with and without metabolic activation. An NTP study shows that there was no evidence of carcinogenic activity in male/female rats and male mice but some evidence of malignant lymphoma in female mice. Citral is absorbed orally and fairly well absorbed dermally, considering its volatility. Citral is rapidly metabolized and excreted, with urine as the major route of elimination of citral-derived radioactivity. The value of NOAEL is 217 mg/m3, based on the results of experiments on rats. Based on these data the authors of this study propose the MAC (TWA) value for citral of 27 mg/m3, MAC (STEL) value of 54 mg/m3 and suggest additional notation: I – irritant substance, A – allergic substance.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 4 (70); 21-41
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Propano-l,3-sulton. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Propane-l,3-sultone. Documentation of suggested occupational exposure limits (OELs)
Autorzy:
Szymańska, J.
Frydrych, B.
Powiązania:
https://bibliotekanauki.pl/articles/138350.pdf
Data publikacji:
2014
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
propano-l,3-sulton
toksyczność
narażenie zawodowe
NDS
propane-l,3-sultone
toxicity
occupational exposure
MAC
Opis:
Propano-l,3-sulton występuje jako bezbarwna ciecz lub krystaliczne ciało stałe. Związek nie występuje jako produkt naturalny, lecz jest otrzymywany przez odwodnienie kwasu y-hydroksy-propanosulfonowego. Propano-13-sulton jest związkiem chemicznym, który znalazł zastosowanie przy produkcji m.in.: barwników, żywic, przyspieszaczy wulkanizacji, fungicydów i insektycydów. Narażenie zawodowe na propano-1,3-sulton dotyczy osób uczestniczących w procesie produkcji lub stosujących: detergenty, inhibitory korozji lub inne produkty powstałe z wykorzystaniem tej substancji. Propano-1,3-sulton do organizmu wchłania się przez: układ oddechowy, pokarmowy oraz skórę. Związek wykazuje bardzo silne działanie drażniące na błony śluzowe i skórę; jest zaliczany do substancji, które mogą wywoływać zmiany o charakterze uczuleniowym. Głównymi objawami ostrego zatrucia obserwowanymi u narażanych zwierząt są: apatia, duszność, biegunka, obrzęk mózgu oraz krwotoczny obrzęk płuc. W dostępnym piśmiennictwie nie ma danych dotyczących ostrego lub przewlekłego działania propano-1,3-sultonu na ludzi. Nie znaleziono również informacji dotyczących badań epidemiologicznych, które by wskazywały, że związek ten wywołuje nowotwory u narażanych pracowników. Na podstawie wyników badań uzyskanych w testach przeprowadzonych w warunkach in vitro i in vivo wykazano, że związek działa mutagennie oraz genotoksycznie. Propano-1,3- -sulton wykazuje również działanie rakotwórcze na zwierzęta. Główne nowotwory obserwowane u zwierząt dotyczyły mózgu i gruczołu mlecznego, a po podaniu na skórę - nowotwory w miejscu podania. Wyznaczona na podstawie danych na zwierzętach wartość ryzyka dla stężenia 0,0074 mg/m3 wynosiła 10-3, a dla stężenia 0,00074 mg/ m3- 10-4. Propano-13-suIton został zaklasyfikowany przez IARC (1999) do grupy 2.B, czyli czynników przypuszczalnie rakotwórczych dla ludzi. W ACG1H (2001) zaliczono ten związek do grupy A3., tzn. związków, dla których istnieją wystarczające dane potwierdzające ich działania rakotwórcze na zwierzęta doświadczalne, lecz brak jest dowodów ich rakotwórczego działania na ludzi. Międzyresortowa Komisja ds. NDS i NDN na posiedzeniu w dniu 26. 03. 2014 r. przyjęła stężenie 0,007 mg/m3 za wartość NDS dla propano-13- -sultonu na poziomie ryzyka 10-3 oraz oznakowanie normatywu literami: „Carc. IB" - substancja rakotwórcza kategorii l.B oraz „Sk" - substancja wchłania się przez skórę.
Propane-13-sultone is a white crystalline solid or a colorless liquid. It is very soluble in water and readily soluble in ketones, esters and aromatic hydrocarbons. It is not known to occur naturally; it is obtained by dehydration of y-hvdroxypropanosulfonic acid. Propane-13-sultone is used in the production of dyes, resins, accelerators, fungicides and insecticides. A person involved in the production of the substance or using detergents, corrosion inhibitors and other products manufactured from this substance can be occupationally exposed to propane-1,3-sultone.The primary routes of potential human exposure to propane-1,3-sultone are ingestion, inhalation and dermal contact. Propane-1,3-sultone very strongly irritates mucous membranes and skin, and is classified as a substance that can cause changes in the nature of sensitisation. The main symptoms of acute toxidty have been observed in animals exposed to apathy, bloody diarrhoea, tremors, haemorrhagic pulmonary oedema, cerebral oedema. There are no data in the literature on acute or chronic actions of propane-1,3-sultone in humans. In the available literature, there is information that this compound causes cancer in exposed workers. Results of standard experiments indicate that pro-pane-1,3-sultone has mutagenic and genotoxic activity. Propane-1,3-sultone shows a strong carcinogenic activity' in the laboratory animals exposed by various routes. The main tumors observed in animals were related to the brain, mam-mary gland and cancer at the injection site after subcutaneous administration. For a concentration of 0.0074 mg/m3, the calculated risk of developing cerebral glioma is 10-3. Experts of the International Agency for Research on Cancer (IARC) have classified propane-13-sultone to Group 2B, i.e., factors possibly carcinogenic to humans.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2014, 3 (81); 39-56
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ftalan dietylu - frakcja wdychana : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Diethyl phthalate - inhalable fraction : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Szymańska, J.
Frydrych, B.
Powiązania:
https://bibliotekanauki.pl/articles/138331.pdf
Data publikacji:
2015
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
ftalan dietylu
narażenie zawodowe
toksyczność
frakcja wdychalna
NDS
diethyl phthalate
occupational exposure
toxicity
inhalable fraction
MAC (TWA)
Opis:
Ftalan dietylu (DEP) jest bezbarwną, oleistą cieczą. Otrzymuje się go w reakcji kwasu ftalowego z etanolem w obecności stężonego kwasu siarkowego. Ftalan dietylu jest stosowany jako: plastyfikator w tworzywach sztucznych, rozpuszczalnik octanu celulozy i nitrocelulozy oraz podstawa środków zapachowych w produkcji kosmetyków i detergentów. Używa się go także jako czynnika smarującego i nawilżającego w produkcji opakowań do żywności oraz farmaceutyków. Narażenie na ftalan dietylu występuje w czasie jego produkcji i stosowania. Narażenie populacji ogólnej jest związane z kontaktem z produktami zawierającymi ten związek (kosmetyki, zabawki) oraz ze spożywaniem zanieczyszczonej żywności czy wody. Według danych GIS w 2007, 2010 i 2011 roku nie zanotowano przypadków przekroczenia obowiązujących normatywów dla ftalany dietylu środowiska pracy (NDS – 5 mg/m3, 3). W dostępnych danych pochodzących z pomiarów wykonanych w 5 województwach, informowały o 2 osobach, które w 2010 r. były narażone na ftalan dietylu o stężeniach mieszczących się w zakresie > 0,1 ÷ 0,5 wartości NDS. Według Polskiej Klasyfikacji Działalności GUS (PKD) osoby te były zatrudnione w dziale 85. – edukacja. Na podstawie danych z 2011 r. nie stwierdzono w omawianych 5 województwach narażenia pracowników na ftalan dietylu o stężeniu powyżej 0,1 wartości NDS. Po naniesieniu ftalanu dietylu na skórę udzi nie stwierdzono działania: drażniącego, uczulającego, fototoksycznego i fotouczulającego. Na podstawie wyników badań epidemiologicznych, w których oceniano działanie toksyczne różnych ftalanów po narażeniu środowiskowym mężczyzn, wskazano na wpływ tych związków na liczbę ruchliwość plemników. Ftalan dietylu nie jest klasyfikowany jako substancja szkodliwa. Po dożołądkowym podaniu związku szczurom i myszom wartości LD50były bardzo duże (5600 ÷ 31 000 mg/kg mc.). Po naniesieniu na skóręwartośćLD50u świnek morskich i królików ustalono na poziomie 22 400 mg/kg mc. Podawanie szczurom dożołądkowodawek 1000 ÷ 1600 mg/kg mc./dzień ftalanu dietylu oraz myszom dawek 3250 ÷ 3750 mg/kg mc./dzień w warunkach krótkoterminowego doświadczenia (4- ÷ 14dniowego) nie powodowało u zwierząt żadnych skutków działania toksycznego związku. Podawanie szczurom dawki 2000 mg/kg mc./dzień (od 1 tygodnia do 3 tygodni) ftalanu dietylu spowodowało: wzrost względnej masy wątroby zmniejszenie stężenia testosteronu w surowicy i jądrach, zwiększenie aktywności katalazy w wątrobie oraz indukcję proliferacji peroksysomów. Dłuższe narażenie szczurów na ftalan dietylu (przez 6 tygodni na dawki 750 mg/kg mc./dzień i 16 tygodni na dawki 150 mg/kg mc./dzień) spowodowało u zwierząt: zmniejszenie przyrostu masy ciała i spożycia paszy oraz u samic wzrost względnej masy: wątroby, żołądka i jelita cienkiego. Na podstawie wyników badań toksyczności przewlekłej u szczurów za wartość LOAEL przyjęto 5000mg/kg mc./dzień, powodujące u zwierząt zmniejszenie przyrostu masy ciała. Po 2-let-nim nanoszeniu na skórę szczurów dawek 320 ÷ 1560 mg/kg mc./dzień ftalanu dietylu obserwowano podrażnienie skóry i zrogowacenie naskórka. Kilkukrotne (przez 2 ÷ 7 dni)dożołądkowe podawanie ftalanu dietylu samcom szczurów w dawce 2000mg/kg mc./dzień spowodowało zaburzenia w zdolnościach reprodukcyjnych: zmiany w komórkach Leydiga oraz zmniejszenie stężenia testosteronu w surowicy i jądrach. Niekorzystny wpływ na rozrodczość(zmniejszenie liczby plemników i ich ruchliwości) notowano także po 28 dniach narażenia zwierząt na dawkę500 mg/kg mc./dzień ftalanu dietylu. Po 5 miesiącach dożołądkowego podawania (w paszy) ftalanu dietylu szczurom w dawkach od 0,57 do 2,85 mg/kg mc./dzień oraz myszom w dawkach od 1,25 do 6,25 mg/kg mc./ dzień przez 90 dni u zwierząt obserwowano zmiany, które świadczyły o uszkodzeniu wątroby i zaburzeniach przemiany: glikogenu, cholesterolu i triglicerydów. Ftalan dietylu powodował u ciężarnych samic szczurów zmniejszenie przyrostu masy ciała i spożycia paszy oraz wzrost resorpcji i śmiertelności płodów (po dawce 600 mg/kg mc./dzień), a także zaburzenia szkieletowe (szczątkowe żebra na odcinku lędźwiowym – po dawkach 500 ÷ 3210 mg/kg mc./dzień).W teście Amesa nie uzyskano jednoznacznych wyników. Ftalan dietylu nie powodował działania genotoksycznego (aberracja chromosomowa i test naprawy DNA).Na podstawie wyników dwuletnich doświadczeńna szczurach nie wykazano rakotwórczego działania ftalanu dietylu. W wyniku obserwacji myszy wykazano zwiększone ryzyko występowania nowotworów wątroby i skóry (po inicjacji, przez podanie DMBA) i po promocji (przez podanie TPA). W EPA zaliczono ftalan dietylu do klasy D, a w ACGIH do grupy A4, czyli związków nieklasyfikowanych jako kancerogenne dla ludzi. Ftalan dietylu szybko wchłania się z przewodu pokarmowego, a także jest szybko rozmieszczany i wydalany z organizmu, nie kumuluje się w tkankach. Ftalan dietylu przechodzi przez barierę łożyskową. Głównym metabolitem ftalanu dietylu jest ftalan monoetylu, wydalany głównie z moczem. U ludzi przez skórę wchłania się około 5% naniesionej dawki ftalanu dietylu, a u szczurów – około 35%.Na podstawie danych o toksyczności ftalanu dietylu dla zwierząt wskazuje się na hepatotoksyczne działanie związku (zmiany histopatologiczne i biochemiczne), które wystąpiło po 5-miesięcznym narażeniu szczurów drogą pokarmową na dawkę1,425mg/kg mc./dzień(wartość LOAEL). Wartość ta była podstawą do zaproponowania wartości najwyższego dopuszczalnego stężenia (NDS) ftalanu dietylu na poziomie 3 mg/m3. Brak jest podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego(NDSCh) oraz wartości dopuszczalnego stężenia w materiale biologicznym(DSB). Normatyw oznakowano literami „Ft” – substancja działająca szkodliwie na płód.
Diethyl phthalate (DEP) is a colorless, oily liquid. It is obtained in the reaction of phthalic acid with ethanol in the presence of concentrated sulfuric acid. Diethyl phthalate is used as a plasticizer in plastics, a solvent of cellulose acetate and nitrocellulose and a base of perfume in cosmetics and detergents. It is also used as a lubricant and a moisturizer in the production of packaging for food and pharmaceuticals.The exposure to diethyl phthalate occurs during its production and use. The exposure of the general population is associated with contact with products containing this compound (cosmetics, toys) and the consumption of contaminated food or water.According to GUS, in 2007, 2010 and 2011 there were no cases of exceedances of the existing norms for diethyl phthalate in workplace air (MAC-TWA 5 mg/m3, STEL 15 mg/m3). Available data from measurements taken in 5 provinces reported two people who in 2010 were exposed to diethyl phthalate concentrations in the range of 0.1 ÷ 0.5 of the MAC-TWA (NDS).According to the Classification of Activities (PKD) of the Polish Central Statistical Office (GUS) these persons were employed in education sector (section 85). The exposure of workers to diethyl phthalate at a concentration above 0.1 TWA values in these 5 provinces was not noticed in 2011.Skin irritation, sensitization, phototoxicity and photosensitization were not observed after application of diethyl phthalate to the human.According to results of epidemiological studies evaluating toxicity of various phthalates on environmental exposure to men, the effect of these compounds on a reduced number and motility of spermatozoa was pointed out.Diethyl phthalate is not classified as harmful substance. After intragastric administration of this compound to rats and mice, LD50values were very high (5.600 ÷ 31.000 mg/kg). After dermal exposure, LD50value in guinea pigs and rabbits has been set at 22,400 mg/kg.Intragastric administration of diethyl phthalate to rats at the doses 1000 ÷ 1600 mg/kg/day and to mice at doses 3250 ÷ 3750 mg/kg/day in short-term experiment (4 ÷ 14-day) did not cause any effects. The administration of diethyl phthalate to rats at the dose 2000 mg/kg/day (for 1–3 weeks) caused the increase in the relative liver weight, the decrease of testosterone levels in serum and testis, the increase of catalase activity in liver and the induction of peroxisomes proliferation. Repeated exposure of rats to diethyl phthalate (for 6 weeks at the dose 750 mg/kg/day and 16 weeks at the dose 150 mg/kg/day) resulted in the decrease of body weight and food consumption, and (in females) the increase in the relative weight of the liver, stomach and small intestine.Based on the results of chronic toxicity studies in rats, LOAEL value accepted as 5000 mg/kg/day causing in animals the decrease body weight. After a 2-year application of diethyl phthalate on skin of rats at the doses of 320 ÷ 1560 mg/kg/day skin irritation and keratosis of the epidermis were observed.Repeated intragastric administration (for 2–7 days) of diethyl phthalate to male rats at the dose of 2000 mg/kg/day resulted in abnormal reproductive capacity: changes in theLeydig cells and decrease of the testosterone concentration in serum and testes. The adverse reproductive effects (reduced sperm count and motility) after 28 days of diethyl phthalate exposure at a dose of 500 mg/kg/day were also reported.After 5 months of intragastric (in feed) administration of diethyl phthalate to rats at the doses of 0.57 ÷ 2.85 mg/kg bw/day and to mice at doses of 1.25 ÷ 6.25 mg/kg bw/day for 90 days, observed changes indicated the liver damage and metabolic disturbances of the glycogen, cholesterol and triglycerides.In pregnant rats, diethyl phthalate caused the decrease of body weight and food consumption and the increase in resorption and fetal mortality (at a dose of 600 mg/kg/day), and disorders of the skeletal (vestigial ribs on the lumbar region after doses 500 ÷ 3210 mg/kg/day).Conclusive results were not obtained in the Ames test. Diethyl phthalate did not cause genotoxic effects (chromosome aberration and DNA repair test).The results of two years of experiments on rats showed no carcinogenic potential of diethyl phthalate. The observations of mice showed an increased risk of cancer of the liver and skin (after initiation by DMBA, and after promotion by giving the TPA).EPA included diethyl phthalate in class D, and ACGIH in A4 as compounds not classified as carcinogenic for humans.Diethyl phthalate is rapidly absorbed from the gastrointestinal tract, but is also rapidly distribution and excreted from the body, it does not accumulate in tissues. Diethyl phthalate passes through the placental barrier. The main metabolite of diethyl phthalate is monoethyl phthalate, mainly excreted in the urine. In humans, about 5% of the applied dose of diethyl phthalate is absorbed through the skin, while in rats about 35%.The data on the toxicity of diethyl phthalate for animals indicate hepatotoxic effect (histopathological and biochemical changes) that occurred after 5-month of oral exposure of rats at the dose of 1.425 mg/kg/day (LOAEL value). This value was the basis for proposing the level of maximum allowable concentration (MAC-TWA) for diethyl phthalate - 3 mg/m3. There is no basis to determine the value of the short-term exposure limit (STEL) and the biological exposure index (BEI). It is recommended to label thissubstance as „Ft” (fetotoxicity).
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2015, 4 (86); 89-129
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Octan 2-metoksyetylu
2-Methoxyethyl acetate
Autorzy:
Szymańska, J.A.
Frydrych, B
Powiązania:
https://bibliotekanauki.pl/articles/137288.pdf
Data publikacji:
2010
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
octan 2-metoksyetylu
efekt hematologiczny
narażenie zawodowe
NDS
2-methoxyethyl acetate
haematologic effects
occupational exposure
BEI
Opis:
Octan 2-metoksyetylu jest bezbarwną cieczą o przyjemnym eterycznym zapachu i gorzkim smaku. Związek ten nie występuje naturalnie, lecz jest otrzymywany w reakcji estryfikacji metoksyetanolu. Na świecie octan 2-metoksyetylu jest stosowany głównie do produkcji: farb, barwników, lakierów, tuszy oraz jako rozpuszczalnik: wosków, olejów, gumy, żywicy, octanu celulozy oraz nitrocelulozy. W Polsce (wg danych Instytutu Medycyny Pracy w Łodzi) w 2000 r. na stężenia ponadnormatywne octanu 2-metoksyetylu (NDS – 25 mg/m3; NDSCh – 100 mg/m3) było narażonych 12 osób, natomiast wg danych Głównej Inspekcji Sanitarnej w 2007 r. takich przekroczeń nie stwierdzono. Chemiczna budowa i właściwości fizykochemiczne związku sugerują, że substancja ta jest wchłaniana do organizmu różnymi drogami i szybko rozmieszczana w tkankach. Octan 2-metoksyetylujest szybko hydrolizowany do 2-metoksyetanolu przez esterazę karboksylową obecną w: nabłonku nosa, wątrobie, nerkach, płucach i we krwi. Główną drogą metabolizmu 2-metoksyetanolu jest oksydacja przez metoksyacetaldehyd do kwasu metoksyoctowego (MAA) wydalanego z moczem. Dożołądkowe, inhalacyjne i naskórne narażenie zwierząt laboratoryjnych na działanie octanu 2-metoksyetanolu powodowało: zmniejszenie masy grasicy, śledziony i jąder, zmniejszenie liczby czerwonych i białych ciałek krwi oraz liczby płytek, a także zmniejszenie hematokrytu, hemoglobiny, liczby komórek w szpiku kostnym oraz zwiększenie liczby niedojrzałych granulocytów. Octan 2-metoksyetylu nie wykazuje działania mutagennego ani rakotwórczego, wpływa natomiast na układ rozrodczy, czego skutkiem jest zaburzenie procesu spermatogenezy manifestujące się jako oligospermia lub azoospermia. Mechanizm działania toksycznego octanu 2-metoksymetylu jest związany z metabolitem powstałym na drodze przemian 2-metoksyetanolu – kwasem 2-metoksyoctowym (MAA), dlatego zaproponowano przyjęcie dla octanu 2-metoksyetylu takiej samej wartości najwyższego dopuszczalnego stężenia (NDS) równej 1 ppm, co odpowiada stężeniu octanu na poziomie 5 mg/m3. Za wartość dopuszczalnego stężenia w materiale biologicznym (DSB) przyjęto stężenie 8 mg kwasu 2-metoksyoctowego (MAA)/g kreatyniny w moczu zebranym pod koniec drugiego tygodnia pracy. Normatyw oznakowano literami „Sk” (wchłania się przez skórę) i „Ft” (substancja działająca toksycznie na płód). Brak jest podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) octanu 2-metoksymetylu, gdyż związek nie wykazywał działania drażniącego w badaniach przeprowadzonych na zwierzętach.
2-Methoxyethyl acetate (2-MEA) is a colorless liquid with a pleasant odor. 2-MEA does not occur naturally, it is produced from 2-methoxyethanol by esterification. 2-Methoxyethyl acetate is used in photographic films, lacquers, and textile printing and as a solvent for waxes, oils, various gums and resins, cellulose acetate, and nitrocellulose. The chemical structure and solubility properties of 2-MEA suggest that this substance is efficiently absorbed by all routes and rapidly distributed to the different tissues. Next it is rapidly and extensively hydrolysed to 2-methoxyethanol by carboxyl esterases in the nasal epithelium, liver, kidneys, lungs, and blood. The dominating metabolic pathway of 2-methoxyethanol is oxidation via methoxyacetaldehyde to methoxyacetic (MAA), which is eliminated in urine. Repeated short-term exposures to 2-MEA via gavage, skin application, or inhalation have similar effects in several animal species including reduced thymus, spleen and testes weight, lower counts of white and red blood cells and platelets, lower hematocrit, haemoglobin levels and bone marrow cellularity, higher numbers of immature granulocytes. 2-MEA has been negative in all genotoxicity and carcinogenicity studies but it has shown reproductive toxicity in laboratory animals. The proposed MAC-TWA (OEL) value was calculated at 5 mg/m3. No MAC-STEL has been recommended. The value of BEI is proposed (8 mg of 2-methoxyacetic acid per gram of urinary creatinine). Notation “Sk” (substance absorbed through the skin) and “Ft” (fetotoxicity) are recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2010, 4 (66); 141-158
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2-Toliloamina
2-Tolyloamine
Autorzy:
Szymańska, J. A
Frydrych, B
Powiązania:
https://bibliotekanauki.pl/articles/138281.pdf
Data publikacji:
2009
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
2-toliloamina
narażenie zawodowe
działanie rakotwórcze
NDS
DSB
2-tolyloamine
occupational exposure
carcinogenicity
OEL
BEI
Opis:
2-Toliloamina (o-toluidyna, CAS: 95-53-4) jest bezbarwną lub bladożółtą oleistą cieczą przypo-minającą zapachem anilinę i otrzymywaną przez redukcję nitrotoluenu. 2-Toliloaminę stosuje się m.in. do wytwarzania barwników, chemikaliów, farmaceutyków i pestycydów. Narażenie zawodowe może być związane z jej produkcją i wykorzystaniem. Skutkiem ostrego zatrucia 2-toliloaminą są: methemoglobinemia, hematuria, podrażnienie nerek i pęcherza moczowego oraz zatrzymanie moczu. Według danych z piśmiennictwa 30-minu-towe narażenie na 2-toliloaminę o stężeniu 176 mg/m3 jest przyczyną wystąpienia objawów ostrego zatrucia, natomiast narażenie na 2-toliloaminę o stężeniu 44 mg/m3 było przyczyną wystąpienia objawów zatrucia określanych jako łagodne. Zatruciom przewlekłym towarzyszy: wzrost stężenia methemoglobiny we krwi, hematuria oraz zmiany w pęcherzu moczowym prowadzące do powstania raka tego narządu. W dostępnym piśmiennictwie nie znaleziono informacji na temat badań epidemiologicznych, w których zawodowe narażenie dotyczyłoby wyłącznie 2-toliloaminy. Toksyczność ostra 2-toliloaminy dla zwierząt jest mała. Wartość DL50 tej substancji mieści się w granicach 150 ÷ 840 mg/kg masy ciała. Jednorazowe narażenie zwierząt na 2-toliloaminę w dużych dawkach powoduje: wzrost poziomu methemoglobiny, sinicę, anemię i zmiany w śledzionie. Wielokrotne narażenie szczurów na 2-toliloaminę podawaną drogą dożołądkową po-wodowało: zahamowanie przyrostu masy ciała zwierząt, zmiany w błonie śluzowej pęcherza moczowego (proliferacja, wakuolizacja, mataplazja), tworzenie depozytów barwnika w śle-dzionie, wątrobie i nerkach oraz zwiększoną liczbę padłych zwierząt. Objawom tym towarzy-szyły: methemoglobinemia, sinica, erytropenia i retikulocytoza. Na podstawie wyników badań mutagenności 2-toliloaminy z użyciem testów bakteryjnych wykazano, że związek ten wykazuje działanie mutagenne jedynie w obecności frakcji S9. Wyniki badań nad genotoksycznością dowodzą, że 2-toliloamina jest związkiem genotoksycznym powodującym m.in. mutacje genowe, aberracje chromosomowe, wymianę chromatyd siostrzanych i pękanie nici DNA. 2-Toliloamina indukuje powstawanie takich nowotworów u zwierząt, jak: naczyniaki, mięsaki, włókniakomięsaki, włókniakogruczolaki i brodawczaki różnych narządów. Na podstawie wy-ników badań nad rakotwórczym działaniem 2-toliloaminy związek ten został zaklasyfikowany w Unii Europejskiej do kategorii 2. W Polsce 2-toliloamina jest zaliczana do 2. kategorii rako-twórczości. 2-Toliloamina wchłania się przez skórę i płuca. Metabolizowana jest na drodze hydroksylacji i N-acetylacji. Powstałe metabolity (głównie 4-amino-m-krezol i N-acetylo-amino-m-krezol) ule-gają sprzęganiu z kwasem siarkowym oraz glukuronowym i w tej postaci są wydalane z moczem. Mechanizm działania toksycznego 2-toliloaminy jest związany z zahamowaniem aktywności monooksygenaz i zaburzeniem procesu detoksykacji. Powstałe w wyniku metabolizmu hy-droksylowe pochodne wykazują działanie methemoglobinotwórcze. Narażenie zawodowe na 2-toliloaminę w połączeniu z innymi aminami aromatycznymi powo-duje raka pęcherza moczowego. Zaproponowano przyjęcie stężenia 3 mg/m3 2-toliloaminy za wartość najwyższego dopuszczalnego stężenia (NDS) związku. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia (NDSCh) 2-toliloaminy. Za wartość dopuszczalnego stężenia w materiale biologicznym (DSB) przyjęto poziom methemoglobiny (MetHb) wynoszący 2%. Proponuje się oznakowanie związku literami: „Sk”, „I” oraz Rakotw. Kat. 2.
2-Tolyloamine (o-toluidine) is a light yellow liquid, slightly soluble in water and soluble in al-cohol and ether. o-Toluidine and its hydrochloride have been mostly used as intermediates in manufacturing a variety of dyes, rubber chemicals, pharmaceuticals and pesticides. o-Toluidine is been absorbed via the respiratory tract and skin. The body rapidly metaboliz-es o-toluidine and the metabolites are excreted largely in the urine. Oral LD50 in animals is 150-840 mg/kg bw. In animal studies, short-term administration of o-toluidine results in cyano-sis, reticulocytosis, anaemia, methaemoglobinaemia, bladder haemorrhage and vacuolization and proliferation of bladder epithelial cells. Chronic exposure results in incidences of vascular tumors (hemangiosarcomas and hemangiomas of the abdominal viscera and urinary bladder). o-Toluidine (hydrochloride) is carcinogenic in mice and rats after oral administration, produc-ing a variety of malignant tumors. o-Toluidine and its hydrochloride produces increased num-bers of chromosomal aberrations, sister-chromatid exchanges and unscheduled DNA. Human exposure to chemicals including o-toluidine in the dyestuffs industry and more recently in the rubber industry has been reported to be associated with an increased incidence of bladder cancer. The European Union has classified o-toluidine as category 2, i.e., a substance considered as car-cinogenic to humans. This classification is obligatory in Poland, too. The Expert Group has recommended an OEL-TWA of 3 mg/m3 and a biological exposure index (BEI) of 2% methaemoglobinaemia.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2009, 2 (60); 149-173
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
3,3’-Dimetylobenzydyna i jej sole – frakcja wdychana : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
3,3-Dimethylbenzidine and its salts – inhalable fraction : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Bruchajzer, E.
Frydrych, B.
Szymańska, J.
Powiązania:
https://bibliotekanauki.pl/articles/958184.pdf
Data publikacji:
2018
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
dimetylobenzydyna
narażenie zawodowe
toksyczność
NDS
dimethylbenzidine
occupational exposure
toxicity
MAC-TWA
Opis:
3,3’-Dimetylobenzydyna (3,3’-DMB, DMB, o-tolidyna) jest ciałem stałym, stosowanym m.in. w postaci dobrze rozpuszczalnego w wodzie dichlorowodorku 3,3’-dimetylobenzydyny (DMB-2HCl). 3,3’-Dimetylobenzydyna jest stosowana do produkcji: barwników azowych, poliuretanowych elastomerów, mas plastycznych oraz tworzyw sztucznych do powlekania. Niewielkie ilości substancji wykorzystuje się także w testach diagnostycznych wykonywanych w specjalistycznych laboratoriach. Narażenie zawodowe na 3,3’-dimetylobenzydynę występuje głównie w czasie produkcji podczas wykorzystywania pigmentów w barwieniu: tkanin, tworzyw sztucznych, papieru oraz skór. W Polsce w latach 2005-2014 3,3’-dimetylobezydynę stosowano w 18 ÷ 30 zakładach, w których na jej działanie było narażonych 135 ÷ 280 osób rocznie (głównie kobiet). W dostępnym piśmiennictwie nie znaleziono danych epidemiologicznych i informacji o toksycznym działaniu samej 3,3’-dimetylobenzydyny na ludzi. Po jednorazowym, dożołądkowym podaniu szczurom 3,3’-dimetylobenzydyny wartość LD50 (mediana dawki śmiertelnej) wynosiła 404 mg/kg mc. W warunkach narażenia powtarzanego u zwierząt laboratoryjnych notowano uszkodzenia: wątroby, nerek i tarczycy oraz zmiany hematologiczne. W testach Amesa przeprowadzonych po aktywacji metabolicznej stwierdzono, że metabolity 3,3’-dimetylobenzydyny wykazują silniejsze działanie mutagenne niż związek macierzysty. W badaniach w warunkach in vitro zanotowano także aberracje chromosomowe i wymianę chromatyd siostrzanych. Działanie rakotwórcze 3,3’-dimetylobenzydyny na ludzi nie zostało udowodnione, mimo że związek jest pochodną rakotwórczej benzydyny. Na podstawie wyników badań doświadczalnych na zwierzętach laboratoryjnych można jednak stwierdzić, że 3,3’-dimetylobenzydyna wykazuje działanie rakotwórcze. Po podaniu szczurom 3,3’-dimetylobenzydyny (drogą podskórną) oraz dichlorowodorku 3,3’-dimetylobenzydyny (w wodzie do picia) stwierdzono m.in. nowotwory: gruczołu Zymbala, gruczołu sutkowego, gruczołu napletkowego, macicy, skóry, wątroby, układu krwiotwórczego, jelita cienkiego i grubego. W IARC zaklasyfikowano 3,3’-dimetylobenzydynę jako substancję prawdopodobnie rakotwórczą dla ludzi (grupa 2.B), zaś w ACGIH – do grupy A3 (udowodnione działanie rakotwórcze na zwierzęta i nieznane działanie rakotwórcze na ludzi). Unia Europejska (zgodnie z klasyfikacją CLP) zaliczyła związek do kategorii kancerogenności 1.B z przypisanym zwrotem H350 – może powodować raka. Wartości dopuszczalnych stężeń dla 3,3’-dimetylobenzydyny w środowisku pracy ustalono tylko w niektórych państwach europejskich (Austrii, Słowenii i Szwajcarii) i wynoszą 0,03 mg/m3. Podstawą do obliczenia wartości najwyższego dopuszczalnego stężenia (NDS) dla 3,3’-dimetylobenzydyny i jej soli była ocena ryzyka wystąpienia nowotworów u samców szczurów narażonych przewlekle na dichlorowodorek 3,3’-dimetylobenzydyny (podawany w wodzie do picia). Za wartość najwyższego dopuszczalnego stężenia zaproponowano przyjęcie stężenia 0,03 mg/m3, tj. z ryzykiem nowotworowym na poziomie 10-4, uwzględniając także możliwość występowania innych nowotworów, nie tylko jelita grubego. Nie ma podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz wartości dopuszczalnej w materiale biologicznym (DSB). Ponadto zaproponowano oznakowanie związku „Carc. 1B”, informujące, że jest to substancja rakotwórcza kategorii zagrożenia 1.B oraz „skóra” – wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową.
3,3'-Dimethylbenzidine (3,3'-DMB, DMB, o-tolidine) is a solid used (as water-soluble dihydrochloride salt (dimethylbenzidine 2HCl)) in the production of azopigments, polyurethane elastomers and plastics for coating. Small amounts are also used in diagnostic tests in laboratories. Occupational exposure to dimethylbenzydine occurs mainly during the production and use of pigments to dye textiles, plastics, paper and leather. In 2005–2014, dimethylbenzidine was used in Poland in 18–30 workplaces, where 135–280 people each year (mainly women) were exposed. No epidemiological data and information related to toxic effects of DMB in humans was found in the available literature. The LD50 value (median lethal dose) after single intragastric administration of 3,3'-dimethylbenzidine to rats was 404 mg/kg. After repeated exposure of laboratory animals, liver, kidney, thyroid injury and hematological changes were noted. In the Ames tests with metabolic activation, it was found that metabolites of 3,3'-dimethylbenzidine show stronger mutagenic action than the parent compound. 3,3'-DMB induced also chromosome aberrations and exchange of sister chromatids in in vitro tests. Although 3,3'-dimethylbenzidine is a derivative of carcinogenic benzidine, carcinogenic effects on humans have not been proven. However, research provides data about carcinogenic effect of 3,3'-DMB in animals. After subcutaneous administration of 3,3'-dimethylbenzidine and its dihydrochloride salt in drinking water, Zymbal's and mammary glands tumors, and cancers of uterus, skin, liver, hematopoietic system, small and large intestine were observed in rats. IARC classified 3,3'- -dimethylbenzidine in the 2B group (a supposed carcinogenic agent for humans), whereas ACGIH – in the A3 group (proved carcinogenic effect on animals and unknown carcinogenic effect for humans). The European Union (according to the CLP classification) has listed 3,3'-DMB in the 1B category with the inscription "H350 – can cause cancer". The permissible concentrations for 3,3'-dimethylbenzidine have been established in some European countries only (Austria, Slovenia and Switzerland) as 0.03 mg/m3 . The basis of the proposed maximum concentration value (MAC-TWA) for 3,3'-dimethylbenzidine and its salts was a risk assessment of cancer in male rats chronically exposed to 3,3'-dimethylbenzidine dihydrochloride in drinking water. Taking into account the cancer risk at the level of 10-4 , a concentration of 0.03 mg/m3 for the MAC-TWA value was proposed. There are no basis to determine the short-term value (STEL) and biological limit values (BLV). It was also proposed to label the compound with "Carc 1B", which indicates that it is a carcinogen category 1B, and "skin" – the absorption of substances through the skin may be as important as an inhalation route.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2018, 2 (96); 61-97
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tlenki żelaza – w przeliczeniu na Fe : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Iron oxides – calculated on Fe : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Bruchajzer, E.
Frydrych, B.
Szymańska, J.
Powiązania:
https://bibliotekanauki.pl/articles/138051.pdf
Data publikacji:
2017
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
tlenki żelaza
narażenie zawodowe
toksyczność
NDS
NDSCh
iron oxides
occupational exposure
toxicity
MAC-TWA
STEL
Opis:
Tlenek żelaza(III), (Fe2O3, nr CAS 1309-37-1) w warunkach naturalnych występuje jako ruda żelaza. Najpowszechniejsza z nich (hematyt) zawiera około 70% czystego żelaza. Tlenek żelaza(III) jest stosowany jako czerwony barwnik w przemyśle: ceramicznym, szklarskim, papie7rniczym oraz jako surowiec ścierny w obróbce metali (skrawanie). Tlenek żelaza(II), (FeO, CAS 1345-25-1) występuje rzadko jako minerał – wustyt. Jest stosowany jako czarny barwnik w kosmetyce oraz do otrzymywania tuszu do tatuażu. Tetratlenek triżelaza (Fe3O4, CAS 1309-38-2; 1317- -61-9) należy do minerałów pospolitych (magnetyt). Wykazuje silne właściwości magnetyczne. Tetratlenek triżelaza występuje w skałach magmowych (gabro, bazalt). W Polsce minerał ten występuje na Dolnym Śląsku: w Kowarach, w Kletnie, okolicach Szklarskiej Poręby, jest również spotykany w bazaltach okolic Złotoryi i na Suwalszczyźnie. Tetratlenek triżelaza jest najbogatszą i najlepszą dla przemysłu rudą żelaza. Narażenie zawodowe na tlenki żelaza występuje w górnictwie oraz hutnictwie przy produkcji: żelaza, stali i wyrobów metalowych. Na tlenki żelaza są narażeni pracownicy zatrudnieni przy mieleniu rud i polerowaniu srebra oraz: spawacze, ślusarze i tokarze. Według Państwowej Inspekcji Sanitarnej w 2013 r. w narażeniu na tlenki żelaza o stężeniach przekraczających obowiązującą wartość NDS (5 mg/m3) pracowało w Polsce 389 osób, a w 2014 r. – 172 osoby. Po jednorazowym, dożołądkowym podaniu szczurom tlenku żelaza(III) wartość LD50 ustalono na ponad 10 000 mg/kg mc., natomiast po podaniu dootrzewnowym – 5500 mg/kg mc. Analiza wyników badań wykonanych na zwierzętach laboratoryjnych wykazała, że zarówno po jednorazowym, jak i wielokrotnym dotchawiczym i inhalacyjnym narażeniu na tlenek żelaza(III) notowano najczęściej przejściowe nasilenie stresu oksydacyjnego i występowanie reakcji zapalnych. Tlenek żelaza(III) nie powodował działania genotoksycznego i rakotwórczego. W dostępnej literaturze nie ma informacji o jego wpływie na: płodność, rozrodczość oraz przebieg ciąży. Dane dotyczące toksyczności przewlekłej tlenków żelaza dla ludzi narażonych w środowisku pracy są nieliczne i dotyczą głównie narażenia pracowników na tlenek żelaza(III). W przypadku badań epidemiologicznych, wszystkie przedstawione w dokumentacji informacje pochodzą z obserwacji ludzi narażonych na łączne działanie tlenków żelaza i innych czynników. Nie podano, czy narażenie zawodowe było związane z konkretnym tlenkiem żelaza, oraz na jakie stężenia pracownicy byli narażeni. Najczęściej spotykanym skutkiem toksycznym w narażeniu zawodowym: górników i hutników rudy żelaza oraz spawaczy, były niewielkie zmiany zwłóknieniowe w płucach oraz pylica żelazowo-krzemowa (widoczne w badaniu RTG). Siderozę (żelazicę, pylicę żelazową) uważa się od lat za chorobę zawodową górników i hutników rud żelaza. Ponadto u: górników, hutników i spawaczy, zanotowano przypadki raka płuc, jednak były one spowodowane łącznym narażeniem na inne związki, m.in.: radioaktywny radon, rakotwórczy chrom, mangan, nikiel, inne tlenki (SiO2, ZnO, CO, NO, NO2, MgO) oraz spaliny z silników diesla. Według IARC tlenek żelaza(III) należy do grupy 3. (nie może być klasyfikowany pod względem działania rakotwórczego na ludzi). Pyły tlenku żelaza(III) mogą się gromadzić w tkance łącznej płuc, co może być przyczyną występowania obszarów zwłóknienia, szczególnie w wyższych partiach zewnętrznych części płatów płucnych. Skutki te były widoczne tylko w badaniu rentgenowskim (RTG). Pylica płuc spowodowana narażeniem na tlenki żelaza przebiegała zwykle bezobjawowo (brak objawów klinicznych i zmian w parametrach funkcji płuc). Podstawą do wyznaczenia propozycji wartości NDS dla frakcji wdychalnej tlenków żelaza było stężenie 10 mg Fe/m3, które u ludzi narażonych zawodowo na tlenek żelaza(III) ponad 10 lat nie powodowało zmian w płucach (wartość NOAEL). Po zastosowaniu współczynnika niepewności (równego 2) związanego z wrażliwością osobniczą otrzymano wartość NDS – 5 mg/m3 (w przeliczeniu na Fe). Taką samą wartość NDS dla frakcji wdychalnej tlenku żelaza(III), (5 mg/m3) otrzymano z badań na chomikach syryjskich narażonych inhalacyjnie na pyły tlenku żęlaza(III) o stężeniu 40 mg/m3 przez całe życie (wartość LOAEL). Podstawą wartości NDS dla frakcji respirabilnej tlenków żelaza były 10-letnie obserwacje ludzi narażonych na tlenek żelaza(III) przy jego produkcji. U 12% pracowników narażonych na frakcję respirabilną o średnich stężeniach 10 ÷ 15 mg/m3 obserwowano zmiany w badaniu RTG płuc. Wartość 10 mg/m3 przyjęto za wartość LOAEL. Po zastosowaniu odpowiednich współczynników niepewności, wartość NDS dla frakcji respirabilnej tlenków żelaza zaproponowano na poziomie 2,5 mg/m3. Autorzy dokumentacji zaproponowali pozostawienie obowiązującej wartości NDSCh dla tlenków żelaza na poziomie 10 mg/m3 dla frakcji wdychanej oraz wprowadzenie wartości NDSCh – 5 mg/m3 dla frakcji respirabilnej. Normatywy oznakowano literą „I”, ze względu na jego działanie drażniące.
Iron (III) oxide, (Fe2O3, nr CAS 1309-37-1) in natural conditions occurs as iron ore. The most common (hematite) contains about 70% pure iron. Iron (III) oxide is used as a red dye in ceramics, glass and paper industries and as a raw material for abrasive metalworking (cutting). Iron (II) oxide, (FeO, CAS 1345-25-1) occurs as a mineral wurtzite and is used as a black dye in cosmetics and as a component of tattoo ink. Iron (II) iron (III) oxide (Fe3O4, CAS 1309-38-2; 1317- -61-9) is a common mineral. It has strong magnetic properties (so called magnetite). It occurs in igneous rocks (gabbro, basalt). It is the richest and the best iron ore for industry. Occupational exposure to iron oxides occurs in the mining and metallurgical industry in the production of iron, steel and its products. Welders, locksmiths, lathes and workers employed in milling ores and polishing silver are exposed to iron oxides. According to data from the State Sanitary Inspection, in 2013, 389 people in Poland were exposed to iron oxide in concentrations exceeding the current NDS (5 mg/m3 ) and in 2014 – 172 people. After single and multiple intratracheal and inhalation exposure of animals, transient intensification of oxidative stress and inflammatory reactions were reported. Iron (III) oxide did not cause genotoxic and carcinogenic effects. In literature, there are no data on its effects on fertility, reproduction and pregnancy. Data on chronic toxicity of iron oxides for humans exposed in working environment are limited. In epidemiological studies, all information presented in the documentation comes from observations of people exposed to the combined effects of iron oxides and other factors. It is not stated whether occupational exposure was related to the specific iron oxide and to what concentrations workers were exposed. The most commonly encountered toxic effect in the occupational exposure of iron ore miners and iron welders and welders was minor lung fibrosis lesions and iron-silicon dust (as seen in the RTG study). Siderose is the occupational disease of miners and iron ore metallurgists. Moreover, cases of lung cancer have been reported in miners, steel workers and welders, but they were caused by total exposure to other compounds, including radioactive radon, carcinogenic chromium, manganese, nickel, other oxides (SiO2, ZnO, CO, NO, NO2, MgO) as well as exhaust gases from diesel engines. According to IARC, iron (III) oxide belongs to group 3 (cannot be classified as carcinogenic to humans). Iron (III) oxides can accumulate in a lung tissue, this process may be responsible for the occurrence of fibrosis sites, particularly in higher parts of external lung parts. These effects were visible in the X-ray examination only. Pneumoconiosis (siderosis) caused by exposure to iron oxides is usually asymptomatic (lack of clinical symptoms and changes in lung function parameters). The basis for the proposed MAC-TWA value for inhalable iron oxide fraction was NOAEL of 10 mg Fe/m3 . People exposed for more than 10 years to iron (III) oxide had no pulmonary changes. After application of an uncertainty factor of 2 (for differences in personal sensitivity in humans), the MAC-TWA value for the iron oxide fraction was proposed at 5 mg/m3 (calculated as Fe). The same observations on humans were the basis for calculating the MAC-TWA value for respirable fraction of iron (III) oxide. On 12% of workers exposed to respirable fraction at mean concentrations of 10 ÷ 15 mg/m3 , changes in pulmonary X-ray were observed. The value of 10 mg/m3 was assumed as LOAEL. After applying the appropriate uncertainty coefficients, the MAC-TWA value for the iron oxide respirable fraction was proposed at 2.5 mg/m3 . The authors propose to leave the short-term value (STEL) of 10 mg/m3 for inhaled fraction for iron oxides and to introduce STEL value of 5 mg/m3 for respirable fraction. It is recommended to label the substances with "I" - irritant substance.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2017, 2 (92); 51-87
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Karbaminian etylu : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Ethyl carbamate : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Szymańska, J.
Bruchajzer, E.
Frydrych, B.
Powiązania:
https://bibliotekanauki.pl/articles/137242.pdf
Data publikacji:
2015
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
karbaminiany etylu
uretan
toksyczność
narażenie zawodowe
NDS
ethyl carbamate
urethane
toxicity
occupational exposure
MAC (TWA)
Opis:
Karbaminian etylu (uretan, nr CAS 51-79-6) jest ciałem stałym, bez zapachu, dobrze rozpuszczalnym w wodzie i rozpuszczalnikach organicznych. W środowisku występuje jako naturalny produkt powstający podczas fermentacji alkoholowej pokarmów i napojów zawierających alkohol. Są one głównym źródłem narażenia populacji generalnej. Techniczne preparaty karbaminianu etylu, otrzymywane na drodze syntezy organicznej, uzyskują wysoką czystość chemiczną. Karbaminian etylu jest stosowany głównie jako półprodukt w syntezie organicznej (m.in. do wytwarzania żywic aminowych), a jego wodne roztwory jako rozpuszczalniki: pestycydów, fumigantów, kosmetyków oraz środków farmaceutycznych stosowanych w weterynarii. Narażenie zawodowe w Polsce na karbaminiany etylu (drogą inhalacyjną i/lub przez kontakt ze skórą) występuje w kilku zakładach produkujących oraz stosujących go i obejmuje kilkadziesiąt osób rocznie. U ludzi nie stwierdzono zatruć ostrych karbaminianom etylu. W dostępnym piśmiennictwie nie ma informacji na temat jego toksyczności przewlekłej u ludzi narażonych zawodowo oraz danych epidemiologicznych. Wartość LD50 dla karbaminianu etylu podanego dożołądkowo szczurom wynosi 1810 mg/kg mc. W zatruciu ostrym zwierząt obserwowano działanie znieczulające i nasenne (wykorzystywane w weterynarii) oraz narkotyczne związku. Karbaminian etylu nie wykazywał działania drażniącego i uczulającego na zwierzęta. Podprzewlekłe narażenie szczurów i myszy na karbaminian etylu podawany w wodzie do picia (o stężeniach 110 ÷ 10 000 ppm, czyli w dawkach 8 ÷ 622 mg/kg mc./dzień dla szczurów oraz 18,3 ÷ 1667 mg/kg mc./dzień dla myszy) spowodowało, zależne od wielkości narażenia, działanie immunosupresyjne. U zwierząt obserwowano także nefropatię i kardiomiopatię, a u samców również uszkodzenie wątroby. Oprócz działania immunotoksycznego u myszy stwierdzono zmiany rozrostowe w układzie rozrodczym i płucach. Po 2-letnim narażeniu myszy na karbaminian etylu w wodzie do picia (o stężeniach 10 ÷ 90 ppm, co odpowiadało dawce 1,17 ÷ 12 mg/kg mc./dzień) zaobserwowano skutki toksycznego działania związku na: wątrobę, serce, płuca oraz macicę. Karbaminian etylu o stężeniach w wodzie wynoszących 30 lub 90 ppm (4 lub 12 mg/kg mc./ dzień) spowodował zwiększoną liczbę padnięć zwierząt. Na podstawie wyników standardowych testów, karbaminian etylu został sklasyfi kowany jako substancja o słabym działaniu mutagennym i genotoksycznym. Wyniki podprzewlekłych i przewlekłych badań nad toksycznością karbaminianu etylu podawanego w różny sposób i różnym gatunkom zwierząt laboratoryjnych, jednoznacznie wskazują na jego rakotwórcze działanie. Związek ten powodował: nowotwory płuc, wątroby, naczyń krwionośnych i skóry, a także chłoniaki i białaczki. Karbaminian etylu wpływa niekorzystnie na płodność. Stwierdzono jego działanie: embriotoksyczne, fetotoksyczne oraz teratogennie. Karbaminian etylu wchłania się do organizmu bardzo szybko i całkowicie po narażeniu w różny sposób i natychmiast podlega dystrybucji w organizmie. Większość karbaminianu etylu (ponad 90%) jest metabolizowana do: etanolu, amoniaku i ditlenku węgla, który jest wydalany z powietrzem wydychanym. Około 5% karbaminiany etylu podlega przemianom przy udziale enzymu CYP 2E1 do karbaminianu winylu, a następnie epoksytlenku karbaminianu winylu, który – przez wiązanie z zasadami DNA i RNA – jest odpowiedzialny za genotoksyczne i rakotwórcze działanie związku. Wydalanie metabolitów z moczem i kałem jest niewielkie i wynosi odpowiednio: 2 ÷ 8% oraz 0,3 ÷ 1%. Karbaminian etylu został zakwalifi kowany przez IARC (2010) do grupy 2.A, czyli czynników prawdopodobnie rakotwórczych dla ludzi. Unia Europejska zaklasyfi kowała go do grupy 1.B, czyli substancji, które mogą powodować raka. W żadnym państwie nie ustalono wartości najwyższego dopuszczalnego stężenia (NDS) dla karbaminianu etylu. W SCOEL dla karbaminiany etylu nie ustalono wartości OEL, gdyż związek zaliczono do grupy A rakotwórczości, tj. do genotoksycznych kancerogenów bez możliwości ustalenia wartości dopuszczalnej na podstawie skutku zdrowotnego. Karbaminian etylu wywołuje nowotwory złośliwe u szczurów i myszy w wielu narządach docelowych, po podaniu go w różny sposób. Karbaminian etylu jest substancją: toksyczną, mutagenną i klastogenną, zwłaszcza w obecności układu z aktywacją metaboliczną.
Ethyl carbamate (urethane, CAS 51-79-6) is a solid, odorless and soluble in water and organic solvents. In an environment it occurs as a natural product produced during alcoholic fermentation of foods and beverages containing alcohol. They could be the main source of exposure of the general population. The technical formulations of ethyl carbamate, obtained through organic synthesis, achieve a high chemical purity. Ethyl carbamate is mainly used as an intermediate in organic synthesis (including manufacturing amino resin), and its aqueous solutions as solvents for pesticides, fumigants, cosmetics and pharmaceuticals used in veterinary medicine. In Poland, occupational exposure to ethyl carbamate (inhalation and/or skin contact) occurs in several plants producing and using it, and many people are exposed every year. In humans, no acute poisoning with ethyl carbamate was noticed. There is no information in the available literature about epidemiological data and chronic toxicity in humans occupationally exposed. The LD50 value of ethyl carbamate given intragastrically to rats is 1810 mg/kg of body weight. In acute intoxication in animals, narcosis and sedation (used in veterinary medicine) and narcotic effects were observed. Ethyl carbamate did not show irritation and sensitization for animals. Subchronic exposure of rats and mice on ethyl carbamate administered in drinking water (with concentrations of 110 — 10.000 ppm, or in doses of 8 — 622 mg/kg/day for rats and 18.3 — 1667 mg/kg/ day for mice) resulted in, depending on the size of the exposure, immunosuppressive activity. In animals, observed nephropathy and cardiomyopathy were also, and in males also damages to liver were observed. In addition to the immunotoxicity in mice, proliferation changes in the genital tract and in the lungs were observed . After 2-year exposure of mice for ethyl carbamate in drinking water (with concentrations of 10 to 90 ppm, corresponding to a dose of 1.17 to 12 mg/kg/day) the toxic effects for liver, heart, lung, and uterus were observed. Ethyl carbamate in concentration in water 30 or 90 ppm (4 or 12 mg/kg /day) caused an increasing number of deaths of animals. Based on the results of standardized tests, ethyl carbamate is classifi ed as a substance with a weak mutagenic and genotoxic effects. The results of subchronic and chronic toxicity studies of ethyl carbamate administered in various ways and various species of laboratory animals show its carcinogenic effect. The compound was found as a cause of cancer of lung, liver, blood vessels and skin, and lymphomas and leukemia. Ethyl carbamate cause a negative impact on fertility. It has embryotoxic, fetotoxic and teratogenic effects. Ethyl carbamate is absorbed into an organism rapidly and completely after exposure in different ways and is immediately subjected to distribution in a body. Majority of ethyl carbamate (90%) is metabolized to ethanol, ammonia and carbon dioxide, which is excreted in the expired air. About 5% of ethyl carbamate is transformed by CYP2E1 to the vinyl carbamate and then to vinyl carbamate epoxide which, by binding to DNA and RNA, is responsible for the genotoxic and carcinogenic effects of the compound. The excretion of metabolites in the urine and faeces is low and amounts 2 — 8% and 0.3 — 1%, respectively. Ethyl carbamate classifi ed by IARC (2010) as 2.A group — agents probably carcinogenic to humans. The European Union classifi ed it as 1.Bv group — substances that can cause cancer. The maximum allowable concentration (MAC) for ethyl carbamate was not set in any country. SCOEL did not established OEL values, since the compound is in Group A carcinogenicity, i.e., genotoxic carcinogens with no establish limit values based on health effect. Ethyl carbamate causes the cancer in rats and mice in many target organs following administration to a differently ways. Ethyl carbamate is toxic, mutagenic or clastogenic, especially in the presence of a metabolic activation.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2015, 3 (85); 67-106
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chinolina : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Quinoline : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Frydrych, B.
Bruchajzer, E.
Szymańska, J.
Powiązania:
https://bibliotekanauki.pl/articles/137555.pdf
Data publikacji:
2018
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
chinolina
narażenie zawodowe
toksyczność
NDS
NDSCh
quinoline
occupational exposure
toxicity
MAC-TWA
STEL
Opis:
Chinolina (CAS Nr 91-22-5) jest bezbarwną cieczą o przenikliwym, nieprzyjemnym zapachu, która ciemnieje pod wpływem światła. Substancja rozpuszcza się w: alkoholu, eterze, acetonie oraz disiarczku węgla. Gwałtownie reaguje z nadtlenkiem wodoru, co stwarza niebezpieczeństwo wybuchu. Chinolina jest związkiem chemicznym powszechnie stosowanym w różnych gałęziach przemysłu, przede wszystkim do produkcji: barwników ftalocyjaninowych, środków farmaceutycznych oraz preparatów antykorozyjnych. Znalazła również zastosowanie w medycynie jako środek do konserwacji preparatów anatomicznych. Narażenie zawodowe na chinolinę dotyczy osób uczestniczących w procesie produkcji tej substancji lub stosujących produkty powstałe z jej użyciem. W Polsce do Centralnego Rejestru Danych o Narażeniu na Substancje, Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym zgłoszono narażenie na chinolinę: w 2012 r. – 266 pracowników, w 2014 r. – 32 pracowników oraz w 2015 r. – 104 pracowników. W warunkach pracy zawodowej głównymi drogami narażenia na chinolinę są: układ oddechowy, przewód pokarmowy i skóra. Do najczęstszych objawów ostrego zatrucia zawodowego chinoliną należą: podrażnienie oczu i skóry, uszkodzenia rogówki, siatkówki lub nerwu wzrokowego oraz bóle i zawroty głowy. Wyniki testów przeprowadzonych w warunkach in vitro i in vivo wykazały, że chinolina działa mutagennie i genotoksycznie. Związek ten wykazywał również działanie rakotwórcze na zwierzęta. Nowotwory obserwowane u zwierząt dotyczyły wątroby (naczyniak krwionośny śródbłonka naczyń, naczyniakomięsak krwionośny, rak wątrobowokomórkowy), którą uznano za narząd krytyczny działania związku. Na podstawie danych literaturowych związek został sklasyfikowany jako substancja mutagenna kategorii zagrożenia 2. i substancja rakotwórcza kategorii zagrożenia 1.B. Na podstawie szacowania ryzyka zawodowego związanego z narażeniem człowieka na chinolinę i dyskusji na posiedzeniu Międzyresortowej Komisji ds. NDS i NDN, zaproponowano przyjęcie wartości NDS dla chinoliny na poziomie ryzyka 1 · 10-3 , czyli 0,6 mg/m3 . Nie było podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) i dopuszczalnego stężenia w materiale biologicznym (DSB). Związek oznakowano dodatkowo: „Carc. 1B” (substancja rakotwórcza kategorii zagrożenia 1.B), literą „I” (substancja o działaniu drażniącym) oraz „skóra” (wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową).
Quinoline is a colorless hygroscopic liquid with a pungent odor. It darkens with age. It is soluble in alcohol, ether, benzene and carbon disulfide, and is slightly soluble in water. It is used as a solvent and a decarboxylation reagent, and as a raw material in manufacturing dyes, antiseptics, fungicides, niacins and pharmaceuticals. The occupational exposure to quinoline applies to a person involved in the production of the substance or using products manufactured from this substance. The primary routes of potential human exposure to quinoline are ingestion, inhalation, and dermal contact. The most common symptoms of poisoning include eye and skin irritation, damage to the cornea, the retina or optic nerve, headaches and dizziness. Quinoline produced mutations in bacteria in the presence of metabolic activation, unscheduled DNA synthesis in rat hepatocytes, and DNA adducts. Studies of carcinogenicity in animals indicated that administration of quinoline (in feed) increased significantly the incidence of vascular tumors (hemangiomas or hemangiosarcomas) of the liver. Quinoline is classifield as mutagenic category 2 (substance, which is consider as mutagenic to humans) and to category 1B of carcinogenic substances (potent carcinogen to humans – may cause cancer). According to the above data, the MAC value for quinoline was established at 0.6 mg/m3 . MAC- STEL value was not established. The substance was labeled with “sk” (absorption through the skin can be similarly important as inhalation) and “I” – irritant substance.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2018, 1 (95); 53-71
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Respiratory disorders in two workers of customs depositories occupationally exposed to mouldy tobacco
Autorzy:
Mackiewicz, B
Skorska, C.
Krysinska-Traczyk, E.
Larsson, L.
Szponar, B.
Milanowski, J.
Czekajska-Chebab, E.
Sitkowska, J.
Cholewa, G.
Szymanska, J.
Dutkiewicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/51916.pdf
Data publikacji:
2008
Wydawca:
Instytut Medycyny Wsi
Tematy:
custom depository worker
bacteria
worker
tobacco
tobacco smoke
respiratory symptom
cigarette
nicotine
bioaerosol
fungi
occupational exposure
tobacco leaf
production process
chemical substance
organic dust toxic syndrome
Źródło:
Annals of Agricultural and Environmental Medicine; 2008, 15, 2
1232-1966
Pojawia się w:
Annals of Agricultural and Environmental Medicine
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-11 z 11

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies