Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "laser detection" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Analiza algorytmów detekcji obiektów infrastruktury kolejowej na podstawie chmury punktów mobilnego skaningu laserowego
Analysis of detection algorithms of railway infrastructure object based on scanning mobile laser point cloud
Autorzy:
Marmol, U.
Powiązania:
https://bibliotekanauki.pl/articles/130674.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
mobilny skaning laserowy
filtracja
detekcja obiektów
mobile laser scanning
filtering
object detection
Opis:
Tematem niniejszego artykułu jest detekcja obiektów infrastruktury kolejowej na podstawie chmury punktów mobilnego skaningu laserowego. Pierwszym istotnym etapem, zanim przystąpi się do właściwej detekcji, jest usunięcie szumu pomiarowego. W przypadku skaningu mobilnego szum jest kluczowym problemem, gdyż wprowadza duże zakłócenia do danych pomiarowych. W pierwszej części artykułu zawarto krótką charakterystykę programów pod kątem prostych filtrów geometrycznych, które zarówno usuwają szumy jak i przeprowadzają proste operacje klasyfikacji (na przykład wydzielenie obiektów oddalonych o określoną wartość głębokości). Dopiero po usunięciu szumu jest możliwe rozpoznawanie obiektów. Jest to stosunkowo nowe zagadnienie, otwierające szerokie pole do analiz i badań naukowych. Do tej pory zostało opisanych kilka metod klasyfikacji danych pochodzących z mobilnych systemów laserowych. Część algorytmów opiera się na metodach wywodzących się z teorii przetwarzania obrazów. Rozproszona chmura punktów jest zapisywana w siatce regularnej jako raster, którego wartości pikseli odpowiadają głębokości lub intensywności danych laserowych. Do metod opartych na obrazach możemy zaliczyć: algorytmy wykorzystujące filtry morfologiczne i algorytmy wyszukiwania. Inne metody detekcji obiektów bazują na danych rozproszonych, czyli oryginalnej chmurze punktów. Przykładem może być metoda oparta na algorytmie RANSAC. Przeprowadzona analiza algorytmów filtracji ujawniła, że mobilny skaning laserowy może stanowić miarodajne źródło do wyodrębniania obiektów.
The subject of this paper is detection of railway infrastructure objects based on mobile laser scanning. The first important step, made before proceeding with correct detection, is to remove the measurement noise. In the case of mobile scanning noise is a key issue, since it introduces a large distortion of the measurement data. In the first part of the article a brief description of the programs in terms of simple geometric filters which both remove noise and carry out simple operations of the classification (for example, the separation of objects spaced by a certain depth). Object recognition is possible only after the removal of the noise This is a relatively new problem, opening a wide field for analysis and research. So far several methods have been described for the classification of the mobile data. Some algorithms based on methods derived from the image processing theory. Scattered cloud of points is stored in a regular grid, the pixel values correspond to the depth or intensity of the laser data. The image-based methods: algorithms using morphological filters and retrieval algorithms. Other methods are based on the detection of objects from the original cloud of points. An example is the method based on RANSAC algorithm. An analysis of filtering algorithms revealed that mobile laser scanning can be a reliable information source to extract objects.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 24; 211-220
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wyodrębnienie drzew z danych lidarowych z zastosowaniem transformaty Hougha
Tree extraction from the cloud of points using Hough transform
Autorzy:
Borowiec, N.
Niemiec, B.
Powiązania:
https://bibliotekanauki.pl/articles/131296.pdf
Data publikacji:
2018
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
detekcja obiektów
lotniczy skaning laserowy
obraz cyfrowy
transformata Hougha
object detection
airborne laser scanner
digital image
Hough transform
Opis:
W niniejszej pracy podjęto próbę automatycznego wyodrębnienia drzew z chmury punktów na podstawie utworzonego obrazu wysokiej roślinności z przefiltrowanych danych laserowych. W tym celu został napisany skrypt w programie MATLAB. Idea jego działania opiera się na tezie, że na obrazach cyfrowych kształt drzew w górnych piętrach zbliżony jest do okręgów. Do ich detekcji posłużono się transformatą Hougha - jedną ze skutecznych metod wykrywania kształtów w widzeniu komputerowym. Badania przeprowadzono na danych pochodzących z lotniczego skaningu laserowego, obejmujących teren Cmentarza Rakowickiego w Krakowie.
In the present study attempts to automatically extract trees from image which was created from points cloud representing high vegetation. For this purpose the script was written in MATLAB. The idea of the operation is based on the thesis that on the digital image trees shape in the upper floors is similar to circles. To detect trees the transform Hough was used - one of the effective methods to detect shapes in computer vision. The research was conducted on data from airborne laser scanning, which included the area of the Rakowicki cemetery in Krakow. In order to check the number of trees, a manual vectorization (indication of the trees tops) on the orthophotomap was made. However this measurement is sub-optimal, but allowed to assess the correctness of the HT algorithm.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2018, 30; 55-66
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Opracowanie i ocena skuteczności działania algorytmu segmentacji słupów trakcyjnych pomierzonych techniką mobilnego skaningu laserowego
Automatic extraction of tracion poles using mobile laser scanning data
Autorzy:
Pastucha, E.
Słota, M.
Powiązania:
https://bibliotekanauki.pl/articles/131232.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
mobilny skaning laserowy
chmura punktów
detekcja obiektów
klasyfikacja
infrastruktura kolejowa
mobile laser scanning
point cloud
object detection
segmentation
railway infrastructure
Opis:
W artykule przedstawiono metodę detekcji kolejowych słupów trakcyjnych w oparciu o dane pochodzące ze skaningu laserowego. Głównymi założeniami podczas opracowywania algorytmu były uniwersalność metody, niezależność od parametrów definiowanych przez użytkownika oraz wysoki stopień automatyzacji. Z uwagi na objętość zbiorów danych ze skaningu laserowego i związanych z tym problemów z efektywnym przetwarzaniem chmur punktów, w proponowanym algorytmie obliczenia podzielono na dwa etapy. W etapie pierwszym wyznaczane są regiony, w których potencjalnie mogą występować słupy trakcyjne. Natomiast w etapie drugim weryfikowane jest położenie słupów w obszarach potencjalnych oraz wyszukiwane są punkty zarejestrowane na powierzchniach słupów. W celu uproszczenia obliczeń w pierwszym etapie analizowana jest różnica w gęstości punktów, znajdujących się bezpośrednio nad torami kolejowymi. W etapie drugim każdy z potencjalnych regionów analizowany jest indywidualnie. Po pierwsze wyznaczane są podzbiory punktów z wykorzystaniem kryterium wysokości. W podzbiorach w sposób iteracyjny odrzucane są punkty, których odległość do średniego położenia punktów w podzbiorze jest większa od przyjętej wielkości granicznej. W ten sposób usuwane są odbicia od obiektów znajdujących sie w sąsiedztwie słupów takich jak drzewa czy lampy, natomiast zachowywane są punkty należące do poszukiwanych słupów trakcyjnych. Przeprowadzone badania potwierdziły skuteczność opracowanego algorytmu. Proponowana metoda pozwoliła na detekcję wszystkich rodzajów słupów, znajdujących się w obszarze zainteresowania.
In the last few years in Poland the railway infrastructure modernization program was lounged. It requires fast and precise technique to acquire data sets. Mobile laser scanning could be implemented, however automatic modeling methods from point cloud data sets are not suitable for geometrically complex railway infrastructure equipment such as traction poles. The main object of this study is the development of automatic traction poles extraction algorithm from laser scanning data. The flexibility of the method and independence from user-defined parameters were the main algorithm objectives. Because of the laser scanning data volume, simple calculations on point cloud subsets should be used to assure processing efficiency. In this study the combination of density and distance analysis was used. Proposed algorithm has been divided into two stages. In the first step regions of interest are selected by analysis of density difference for points located directly above the railway tracks. The influence of point density bin size on the number of correctly classified region was tested. In the second stage, each of the potential regions is analyzed individually. Iterative method of rejecting points based on distance criteria was used to extract traction poles points. In the study the point cloud from mobile laser scanner with density of 700 points/m2 was used. The test area covers 1.5 km railroad section between Miechow and Slomniki in Poland and contains 26 traction poles. All traction poles within study area were detected. It was proved that by appropriate combination of density and distance analysis, accurate traction poles extraction is possible even in complex regions with many surrounding objects.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 24; 267-278
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody wykrywania obiektów w chmurze punktów
Point cloud object detecting methods
Autorzy:
Zator, S.
Michalski, P.
Powiązania:
https://bibliotekanauki.pl/articles/152807.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
skaning laserowy
pomiary precyzyjne
pomiar odległości
detekcja obiektów
identyfikacja obiektów
laser scanning
measurement precision
distance measurement
object detection
object identification
Opis:
Artykuł prezentuje aktualny stan wiedzy w dziedzinie przetwarzania chmur punktów pod kątem wykrywania obiektów typu prymityw. Działanie algorytmu zostało zweryfikowane na podstawie danych rzeczywistych uzyskanych w wyniku skanowania obiektów rzeczywistych skanerem laserowym Trimble FX. Autorzy zaproponowali własną metodę hybrydową pozwalającą wykryć określone typy obiektów poprzez przetwarzanie pojedynczej linii skanu. Przedstawiono wady i zalety takiego podejścia.
In this paper the current state of knowledge in the field of point cloud processing for the detection of primitive objects is presented. The first section presents the main parameters of a scanning device and describes the methodology of making measurements. The next section provides an overview of the most popular methods for the certain shape objects detection in the point cloud. For each method, there are presented the basic principles that must comply with the data that can be used. The used data were a scene containing simple shaped objects such as a cylinder, a plane. The authors propose their own approach based on the processing of a single scan line. The method is based on the assumption that the scanned scene consists of a set of points forming lines parallel to each other. One line corresponds to one rotation of the scanning mirror furnishing. The lines are considered independently for the first stage of the algorithm. For each line the search step is performed, for a simple object such as a line or an arc. After suitable transformation of the coordinate system, each line can be simplified from 3D to 2D. The search is based on the usage of the Hough Transform for 2D objects. The results from the single lines are grouped into clusters, and then comparison with the results of the adjacent lines were made. The final step is to separate segments within the adjacent line. The result is a group of points corresponding to the set criterion.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 10, 10; 862-864
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies