- Tytuł:
- Weak uniform normal structure and iterative fixed points of nonexpansive mappings
- Autorzy:
-
Domínguez Benavides, T.
López Acedo, G.
Xu, Hong - Powiązania:
- https://bibliotekanauki.pl/articles/967052.pdf
- Data publikacji:
- 1995
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
nonexpansive mapping
iterative fixed point
geometrical coefficients of Banach spaces
James' quasi-reflexive space
weak uniform normal structure - Opis:
- This paper is concerned with weak uniform normal structure and iterative fixed points of nonexpansive mappings. Precisely, in Section 1, we show that the geometrical coefficient β(X) for a Banach space X recently introduced by Jimenez-Melado [8] is exactly the weakly convergent sequence coefficient WCS(X) introduced by Bynum [1] in 1980. We then show in Section 2 that all kinds of James' quasi-reflexive spaces have weak uniform normal structure. Finally, in Section 3, we show that in a space X with weak uniform normal structure, every nonexpansive self-mapping defined on a weakly sequentially compact convex subset of X admits an iterative fixed point.
- Źródło:
-
Colloquium Mathematicum; 1995, 68, 1; 17-23
0010-1354 - Pojawia się w:
- Colloquium Mathematicum
- Dostawca treści:
- Biblioteka Nauki