Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "linear networks" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Application of Discriminant Analysis and Neural Networks to Forecasting the Financial Standing of Farms
Wykorzystanie analizy dyskryminacyjnej oraz sieci neuronowych do prognozowania sytuacji finansowej gospodarstw rolniczych z uwzględnieniem czasu
Autorzy:
Kisielińska, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/905048.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
linear discriminant function
neural networks
Opis:
The aim of the research was to determinate a linear discriminant function and neural network that could be applied for financial situation forecasting in polish farms sector. The construction of discriminant models was based on set of financial indicators and the classification criterion was based on the private farm's income. The investigated population was divided into two equal groups with respect to the median value of income. The data was gathered in the period of several years that allowed examine the influence of the time on the quality of discriminant models. Also the set of indicators with large forecasting ability was determined. The data used for the discriminant models was sourced from private farms keeping farm accountancy under auspices the Institute of Agricultural and Food Economics in the years 1992-2002. The calculations was made with help of STATISTICA and data analysis with Excel using VISUAL BASIC FOR APPLICATION.
Celem prezentowanych badań było wyznaczenie liniowej funkcji dyskryminacyjnej oraz sieci neuronowej do tworzenia prognoz sytuacji finansowej gospodarstw rolniczych. Podstawę, konstrukcji modeli dyskryminacyjnych stanowił zestaw wskaźników finansowych, natomiast kryterium klasyfikacji oparte zostało na dochodzie rolniczym. Badaną zbiorowość podzielono na dwie równoliczne klasy. Gospodarstwa osiągające dochód rolniczy mniejszy od mediany (gospodarstwa słabe) zaliczano do klasy I, natomiast o dochodzie od niej większym (gospodarstw dobre) do II. Taki dobór kryterium klasyfikacji wynika z tego, że w przypadku gospodarstw rolniczych problem bankructwa praktycznie nie występuje, wobec czego nie można dla nuli budować typowych modeli ostrzegawczych. Analizy przeprowadzono na podstawie danych pochodzących z kilku lat, co pozwoliło im zbadanie wpływu czasu na jakość uzyskanych modeli dyskryminacyjnych. Chodziło o sprawdzenie, czy model zbudowany dla jednego roku można będzie wykorzystać w lalach kolejnych. Cel dodatkowy polegał na określeniu wskaźników finansowych o największych zdolnościach prognostycznych, czyli takich, których wpływ na wartość funkcji dyskryminacyjnej jest najistotniejszy. Modele dyskryminacyjne utworzono w oparciu o wyniki finansowe gospodarstw rolniczych prowadzących rachunkowość rolną pod kierunkiem Instytutu Ekonomiki Rolnictwa i Gospodarki Żywnościowej w latach 1992-2001. Do obliczeń wykorzystany został pakiet STATISTICA, natomiast obróbkę danych i analizę wyników wykonano w arkuszu kalkulacyjnym EXCEL wykorzystując język VISUAL BASIC FOR APPLICATION.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 225
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On solving selected problems of linear algebra by means of neural networks
Zagadnienie rozwiązywania wybranych zadań algebry liniowej za pomocą sieci neuronowych
Autorzy:
Mrówczyńska, M.
Powiązania:
https://bibliotekanauki.pl/articles/395896.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieci neuronowe
algebra liniowa
neural networks
linear algebra
linear systems
Opis:
The paper presents selected practical applications and results of computer simulations from the field of numerical linear algebra realized by means of neural networks. Bearing in mind aspects of applications, it has been decided that priority should be given to the description of the problem of soling over-determined linear systems in the norm l_2 and the norm l_1.
W pracy przedstawiono wybrane zastosowania praktyczne i wyniki symulacji komputerowych z zakresu numerycznej algebry liniowej, realizowanej za pomocą sieci neuronowych. Mając na względzie aspekty zastosowań, uznano za celowe nadać priorytet opisowi zagadnienia wyrównania nadokreślonych układów liniowych w normie l_2 oraz w normie l_1. Do standardowych operacji numerycznych zaliczono również algorytmy obliczania inwersji macierzy kwadratowych oraz wyznaczania ich wartości własnych i wektorów własnych.
Źródło:
Civil and Environmental Engineering Reports; 2011, 7; 5-17
2080-5187
2450-8594
Pojawia się w:
Civil and Environmental Engineering Reports
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie kartograficzne z wykorzystaniem neurorozmytych automatów komórkowych
Using of neuro-fuzzy cellular automata for cartographic modelling
Autorzy:
Olszewski, R.
Powiązania:
https://bibliotekanauki.pl/articles/130338.pdf
Data publikacji:
2003
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
automaty komórkowe
modelowanie nieliniowe
generalizacja
sieci neuronowe
systemy wnioskowania rozmytego
cellular automata
non-linear modelling
generalization
neural networks
fuzzy inference systems
Opis:
Mapa jako środek przekazu informacji chorologicznej, tj. informacji o rozmieszczeniu obiektów i zjawisk w przestrzeni geograficznej, podlega ograniczeniom wynikającym z zakresu pojemności informacyjnej. W procesie przekazu kartograficznego istnieje zatem konieczność celowego uogólnienia informacji źródłowej realizowanego poprzez generali-zację. Jednym ze sposobów generalizacji jest agregacja danych przestrzennych. Istnieje wiele algorytmicznych metod agregacji, większość z nich związana jest z generalizacją danych zapisanych w formacie wektorowym. Dla danych źródłowych w postaci rastrowej wymaga to pracochłonnej wstępnej konwersji formatu raster → wektor oraz wynikowej konwersji wektor → raster. Autor podjął próbę zastosowania bezpośredniej agregacji obiektów powierzchniowych na obrazach rastrowych. Przeprowadzone badania wskazują na celowość zastosowania metod tzw. sztucznej inteligencji obliczeniowej, jako metody kartograficznego modelowania tak zdefiniowanych danych źródłowych. W artykule omówiono trzy wybrane metody sztucznej inteligencji obliczeniowej (automaty komórkowe, sztuczne sieci neuronowe i systemy wnioskowania rozmytego) oraz ich zastosowanie w procesie generalizacji kartograficznej.
Investigations which have been performed by the author justify utilisation of methods of the, so-called, artificial intelligence, as a complex method of cartographic modelling of source data. Of the many existing methods for area aggregation a majority concern maps in vector format. The author investigated some approaches to direct aggregation of area objects in raster maps. This includes cellular automata, neural networks and fuzzy inference systems. The essence of cellular automata is the ability to create complex, global patterns and spatial behaviour, based on simple rules of changes of local range and on knowledge concerning individual cells. Therefore a model of the cartographic generalization process, combining the nature of quantitative generalization of the content and the form with the nature of qualitative generalization, may be developed based on the theory of non-linear cellular automata.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2003, 13a; 171-180
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie procesu osiadania terenu górniczego Kopalni Węgla Brunatnego Bełchatów - nowe podejście
Land subsidence modeling in mining area of open pit Brown Coal Mine Bełchatów - a new approach
Autorzy:
Palmąka, M.
Powiązania:
https://bibliotekanauki.pl/articles/2074851.pdf
Data publikacji:
2011
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Bełchatów
GIS
geostatystyka
interpolacja
modele liniowe
modele nieliniowe
osiadanie terenu
Sammon's mapping
mapy samoorganizujące się
SOM
sieci neuronowe
regresja liniowa
geostatistics
interpolation
linear models
land subsidence
self-organizing map
neural networks
multiple linear regression
Opis:
From the beginning of open-pit mining works (i.e. ground massive dewatering, access excavation, cover dumping) in 1976, which were strictly connected with an exposure a brown coal beds on Bełchatów field it was noticed, that a land surface subsided in the vicinity of Brown Coal Mine Bełchatów. Quantitative land subsidence assessments, which are based on deterministic models (elastic ground model, consolidation model), are not efficient enough to simulate the process – adjusted coefficient of determination amounts R2kor2kor
Źródło:
Przegląd Geologiczny; 2011, 59; 245-250
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speech nonfluency detection and classification based on linear prediction coefficients and neural networks
Autorzy:
Kobus, A.
Kuniszyk-Jóźkowiak, W.
Smołka, E.
Codello, I.
Powiązania:
https://bibliotekanauki.pl/articles/333600.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
przewidywanie liniowe
liniowe kodowanie predykcyjne
sieci nuronowe
kowariancja
brak płynności
mowa
wykrywanie
perceptron
linear prediction
LPC
neural networks
Kohonen
covariance
nonfluency
speech
detection
radial
Opis:
The goal of the paper is to present a speech nonfluency detection method based on linear prediction coefficients obtained by using the covariance method. The application “Dabar” was created for research. It implements three different methods of LP with the ability to send coefficients computed by them into the input of Kohonen networks. Neural networks were used to classify utterances in categories of fluent and nonfluent. The first one was Kohonen network (SOM), used to reduce LP coefficients representation of each window, which were used as input data to SOM input layer, to a vector of winning neurons of SOM output layer. Radial Basis Function (RBF) networks, linear networks and Multi-Layer Perceptrons were used as classifiers. The research was based on 55 fluent samples and 54 samples with blockades on plosives (p, b, d, t, k, g). The examination was finished with the outcome of 76% classifying.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 15; 135-143
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies