Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Tadeusiewicz, R" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Neural networks in mining sciences – general overview and some representative examples
Sieci neuronowe w naukach górniczych – ogólne omówienie i kilka reprezentatywnych przykładów
Autorzy:
Tadeusiewicz, R.
Powiązania:
https://bibliotekanauki.pl/articles/219318.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neural networks
applications in mining sciences
process modeling
systems modeling
machine learning
modeling of the oil mining process
forecasting of reservoir properties
sieci neuronowe
zastosowania w naukach górniczych
modelowanie procesów
modelowanie systemów
uczenie maszyn
modelowanie procesu wydobycia ropy naftowej
przewidywanie właściwości zbiornikowych pokładów geologicznych
Opis:
The many difficult problems that must now be addressed in mining sciences make us search for ever newer and more efficient computer tools that can be used to solve those problems. Among the numerous tools of this type, there are neural networks presented in this article – which, although not yet widely used in mining sciences, are certainly worth consideration. Neural networks are a technique which belongs to so called artificial intelligence, and originates from the attempts to model the structure and functioning of biological nervous systems. Initially constructed and tested exclusively out of scientific curiosity, as computer models of parts of the human brain, neural networks have become a surprisingly effective calculation tool in many areas: in technology, medicine, economics, and even social sciences. Unfortunately, they are relatively rarely used in mining sciences and mining technology. The article is intended to convince the readers that neural networks can be very useful also in mining sciences. It contains information how modern neural networks are built, how they operate and how one can use them. The preliminary discussion presented in this paper can help the reader gain an opinion whether this is a tool with handy properties, useful for him, and what it might come in useful for. Of course, the brief introduction to neural networks contained in this paper will not be enough for the readers who get convinced by the arguments contained here, and want to use neural networks. They will still need a considerable portion of detailed knowledge so that they can begin to independently create and build such networks, and use them in practice. However, an interested reader who decides to try out the capabilities of neural networks will also find here links to references that will allow him to start exploration of neural networks fast, and then work with this handy tool efficiently. This will be easy, because there are currently quite a few ready-made computer programs, easily available, which allow their user to quickly and effortlessly create artificial neural networks, run them, train and use in practice. The key issue is the question how to use these networks in mining sciences. The fact that this is possible and desirable is shown by convincing examples included in the second part of this study. From the very rich literature on the various applications of neural networks, we have selected several works that show how and what neural networks are used in the mining industry, and what has been achieved thanks to their use. The review of applications will continue in the next article, filed already for publication in the journal „Archives of Mining Sciences“. Only studying these two articles will provide sufficient knowledge for initial guidance in the area of issues under consideration here.
Liczne i trudne problemy, jakie muszą być obecnie rozwiązywane w naukach górniczych, skłaniają do poszukiwanie i wypróbowywania wciąż nowszych i bardziej sprawnych narzędzi informatycznych, które mogą być wykorzystane do rozwiązywania tych problemów. Wśród narzędzi tego typu, które wprawdzie jeszcze powszechnie wykorzystywane nie są, z pewnością zasługują na uwagę, warto rozważyć przedstawiane w tym artykule sieci neuronowe. Sieć neuronowa, której schemat przedstawiony jest na rysunku 1, jest narzędziem tak zwanej sztucznej inteligencji, wywodzącym się z prób modelowania struktury i funkcji biologicznych systemów nerwowych. Początkowo budowane i badane wyłącznie z ciekawości naukowej, jako komputerowe modele fragmentów ludzkiego mózgu, sieci neuronowe nieoczekiwanie okazały się skutecznym narzędziem w wielu zastosowaniach: w technice, w medycynie, w ekonomii a nawet w naukach społecznych. Mogą one dostarczać pojedynczych rozwiązań (wartości oszacowań poszukiwanych parametrów, lub przesłanek do podjęcia określonych decyzji), bądź całych wektorów rozwiązań – jakkolwiek w tym drugim przypadku celowe jest rozważenie kwestii, czy zastosować jedną sieć o wielu wyjściach, czy kilka sieci mających pojedyncze wyjście (Rys. 2). Przy tworzeniu sieci neuronowych trzeba wybierać stopień złożoności jej struktury, co nie jest łatwe, ponieważ sieć o zbyt ubogiej strukturze (zwłaszcza dysponująca zbyt mała liczbą tak zwanych neuronów ukrytych) może nie podołać rozwiązaniu bardziej złożonego zadania, natomiast sieć mająca zbyt skomplikowaną i bogatą strukturę zawsze sprawia kłopoty podczas procesu uczenia. Proces uczenia jest kluczem do wszystkich zastosowań sieci neuronowych. Kluczem do skutecznego nauczenia sieci rozwiązywania jakiejś klasy zadań jest posiadanie tak zwanego zbioru uczącego, to znaczy zbioru przykładowych zadań wraz z ich prawidłowymi rozwiązaniami (Rys. 4). Wprowadzając na wejście sieci dane stanowiące przesłanki do rozwiązania zadania i porównując odpowiedź sieci z prawidłową odpowiedzią zapisaną w zbiorze uczącym można na podstawie wykrytego błędu automatycznie korygować parametry sieci, co prowadzi zwykle do tego, że sieć po pewnym czasie sama nauczy się rozwiązywania rozważanej klasy zadań. Dzięki korzystaniu z procesu uczenia (opartego na przykładach, a nie na regułach) sieć neuronowa może rozwiązywać zadania, dla których my (użytkownicy sieci) nie dysponujemy wiedzą, jak te zadania należy rozwiązywać (Rys. 6). Dzięki temu sieć neuronowa może służyć jako model dowolnego złożonego procesu, co pozwala na wykonywanie dla tego procesu wielu istotnych czynności (Rys. 7). Niestety, mimo niewątpliwych zalet sieci neuronowych w naukach górniczych są one stosowane raczej rzadko. Prezentowany artykuł ma przekonać Czytelników, że sieci neuronowe mogą się okazać bardzo przydatne także w naukach górniczych. Artykuł stanowi również użyteczne wstępne wprowadzenie do wiedzy o sieciach neuronowych. Praca zawiera bowiem informacje o tym, jak są zbudowane nowoczesne sieci neuronowe, jak one działają i jak można ich używać. To wstępne omówienie przedstawione w artykule może pomóc w tym, by Czytelnik wyrobił sobie opinię, czym jest to narzędzie, jakie ma właściwości i w związku z tym do czego może mu się przydać. Oczywiście skrótowe wprowadzenie do problematyki sieci neuronowych zawarte w prezentowanym artykule nie wystarczy tym Czytelnikom, którzy dadzą się przekonać i naprawdę będą chcieli użyć sieci neuronowych. Będą oni potrzebowali jeszcze sporej porcji szczegółowej wiedzy, żeby mogli zacząć samodzielnie tworzyć takie sieci i ich używać w praktyce. Jednak jeśli decyzja o wypróbowaniu możliwości sieci neuronowych będzie pozytywna, to zainteresowany Czytelnik będzie mógł w artykule znaleźć odnośniki do pozycji literatury, pozwalających szybko i sprawnie poznać technikę sieci neuronowych na poziomie wystarczającym do rozpoczęcia własnych prac z tym wygodnym narzędziem. Będzie to tym łatwiejsze, że obecnie dostępnych jest sporo gotowych programów komputerowych pozwalających szybko i bez wysiłku tworzyć sztuczne sieci neuronowe, uruchamiać je, uczyć i wykorzystywać praktycznie. Oczywiście kluczową sprawą jest kwestia, jak tych sieci używać w naukach górniczych. O tym, że jest to możliwe i celowe przekonują jednak przykłady zawarte w drugiej części opracowania. Z przebogatej literatury, dotyczącej różnych zastosowań sieci neuronowych, wybrano kilkanaście prac, które pokazują, jak i do czego sieci neuronowych w górnictwie użyto i co zostało osiągnięte dzięki ich zastosowaniu. Ten przegląd zastosowań będzie kontynuowany w następnym artykule, zgłoszonym już do publikacji w czasopiśmie „Archiwum Górnictwa” i dopiero przestudiowanie obydwu tych artykułów dostarczy wiedzy wystarczającej do wstępnej orientacji w obszarze rozważanej tu problematyki.
Źródło:
Archives of Mining Sciences; 2015, 60, 4; 971-984
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci neuronowych w dochodzeniach związanych z przestępczością gospodarczą na rynku paliw płynnych. Część 1
The use of neural networks in investigations related to economic crime on the liquid fuels market. Part 1
Autorzy:
Haduch, B.
Tadeusiewicz, R.
Powiązania:
https://bibliotekanauki.pl/articles/1835326.pdf
Data publikacji:
2017
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
sieci neuronowe
benzyna silnikowa
właściwości benzyn silnikowych
neural networks
motor gasoline
motor gasoline properties
Opis:
W artykule dokonano krótkiego przeglądu literatury poświęconej wykorzystaniu sieci neuronowych przy określaniu niektórych właściwości benzyn silnikowych, istotnych przy predykcji ich jakości w powiązaniu ze składem chemicznym oznaczanym metodami chromatograficznymi (GC–FID, GC–MS).
In the article a brief review of the literature on the use of neural networks in the determination of certain properties of motor gasoline relevant for the prediction of their quality in relation to chemical compositions determined by chromatography (GC–FID, GC–MS) was done.
Źródło:
Nafta-Gaz; 2017, 73, 12; 974-979
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of diagnostic features in the coronary artery disease (CAD) by application of statistical methods and neural networks
Autorzy:
Stanisz-Wallis, K.
Izworski, A.
Dembinska-Kiec, A.
Tadeusiewicz, R.
Lech, T.
Powiązania:
https://bibliotekanauki.pl/articles/1965783.pdf
Data publikacji:
2004
Wydawca:
Politechnika Gdańska
Tematy:
coronary artery disease
logistic regression method
neural networks
Opis:
The present work is aimed at comparing the effectiveness of two different methods of risk factor assessment used for prediction of the CAD (coronary artery disease): the logistic regression method and the application of artificial neural networks. The former is widely used in medical research, while the latter is relatively rare. In the logistic regression method hierarchical analysis was employed to select the significant variables of the classification process. In the neural network approach several strategies were proposed for selection of the discriminative variables, all based on weight analysis in the constructed networks. Both methods have produced a consistent set of discriminative variables (Glu0, Ins0, Ins30, BMI, apoA1 and HDL-Ch), belonging to three groups of risk factors associated with insulin resistance, obesity and lipid disorders.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2004, 8, 2; 287-295
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies