Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "regularization" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Optimisation of neural state variables estimators of two-mass drive system using the Bayesian regularization method
Autorzy:
Kamiński, M.
Orłowska-Kowalska, T.
Powiązania:
https://bibliotekanauki.pl/articles/202379.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
electrical drive
two-mass system
state estimation
neural networks
training methods
Bayesian regularization
Opis:
The paper deals with the application of neural networks for state variables estimation of the electrical drive system with an elastic joint. The torsional vibration suppression of such drive system is achieved by the application of a special control structure with a state-space controller and additional feedbacks from mechanical state variables. Signals of the torsional torque and the load-machine speed, estimated by neural networks are used in the control structure. In the learning procedure of the neural networks a modified objective function with the regularization technique is introduced. For choosing the regularization parameters, the Bayesian interpretation of neural networks is used. It gives a possibility to calculate automatically these parameters in the learning process. In this work results obtained with the classical Levenberg-Marquardt algorithm and the expanded one by a regularization function are compared. High accuracy of the reconstructed signals is obtained without the necessity of the electrical drive system parameters identification. Simulation results show good precision of both presented neural estimators for a wide range of changes of the load speed and torque. Simulation results are verified by the laboratory experiments.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2011, 59, 1; 33-38
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using Tikhonov regularization to improve estimation of robot position based on uncertain robot model obtained by neural network
Zastosowanie regularyzacji Tikhonova do poprawy estymacji pozycji robota na podstawie modelu o niedokladnych parametrach wyznaczonych za pomocą sieci neuronowych
Autorzy:
Możaryn, J.
Kurek, J. E.
Powiązania:
https://bibliotekanauki.pl/articles/154504.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
robotyka
sieci neuronowe
model robota
regularyzacja
robotic
neural networks
inverse dynamic problem
regularization
Opis:
A method for improvement of a position estimation of a robot manipulator based on model with uncertain parameters is presented. To calculate the position of the robot there was designed the robot model using artificial neural networks with structure of the mathematical model in the form of Lagrange-Elder equations. The Tikhonov regularization was then used to improve the approximation of the robot's position. The example of the position of the robot PUMA 560 with 6 degrees of freedom calculation with proposed method is presented. Obtained results indicate significant improvement of the estimation.
W pracy przedstawiono metodę poprawy estymacji położeń robota na podstawie modelu robota o niedokładnych parametrach. Do wyznaczania położenia robota zaprojektowano model robota z wykorzystaniem sztucznych sieci neuronowych o strukturze modelu matematycznego w formie równań Lagrange'a-Eulera. W celu poprawy estymacji położeń na podstawie wyznaczonego modelu zastosowano regularyzację Tikhonowa. Zaproponowana metoda została przedstawiona na przykładzie odtwarzania położeń robota PUMA 560. Otrzymane wyniki wskazują na znaczną poprawę dokładności.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 3, 3; 198-204
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Convergence Analysis of Inverse Iterative Neural Networks with L₂ Penalty
Autorzy:
Wen, Y.
Wang, J.
Huang, B.
Zurada, J. M.
Powiązania:
https://bibliotekanauki.pl/articles/108754.pdf
Data publikacji:
2016
Wydawca:
Społeczna Akademia Nauk w Łodzi
Tematy:
neural networks
gradient descent
inverse iterative
monotonicity
regularization
convergence
Opis:
The iterative inversion of neural networks has been used in solving problems of adaptive control due to its good performance of information processing. In this paper an iterative inversion neural network with L₂ penalty term has been presented trained by using the classical gradient descent method. We mainly focus on the theoretical analysis of this proposed algorithm such as monotonicity of error function, boundedness of input sequences and weak (strong) convergence behavior. For bounded property of inputs, we rigorously proved that the feasible solutions of input are restricted in a measurable field. The weak convergence means that the gradient of error function with respect to input tends to zero as the iterations go to infinity while the strong convergence stands for the iterative sequence of input vectors convergence to a fixed optimal point.
Źródło:
Journal of Applied Computer Science Methods; 2016, 8 No. 2; 85-98
1689-9636
Pojawia się w:
Journal of Applied Computer Science Methods
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies