Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural network algorithms" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Porównanie algorytmów uczenia sieci neuronowej jednokierunkowej, z czasowym opóźnieniem, wykorzystanej do predykcji wartości temperatury powietrza atmosferycznego
Comparison of algorithms to education of unidirectional neural network, with time-lag, used to predicting values of atmospherical air temperature
Autorzy:
Białobrzewski, I.
Powiązania:
https://bibliotekanauki.pl/articles/286465.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
predykcja temperatury
sieć neuronowa
algorytm uczenia sieci
MATLAB
temperature prediction
neural network
algorithms of network education
Opis:
Przedstawiono wyniki badań wpływu wyboru algorytmu uczenia sieci neuronowej jednokierunkowej, z czasowym opóźnieniem, o topologii perceptronu wielowarstwowego, wykorzystującej w procesie uczenia algorytm wstecznej propagacji błędu, na wyniki predykcji wartości temperatury powietrza atmosferycznego. Stwierdzono, że algorytm uczenia, br – regularyzacja Bayesa, okazał się jednym z najlepszych pod względem wszystkich analizowanych parametrów oceny przewidywanych wartości temperatur.
Paper presented the study on the effect of selecting an algorithm to education of unidirectional neural network with time-lag, of multilayer perceptron topology, and using an algorithm of reversal error propagation, on results of predicting values of atmospherical air temperature. It was stated that the education algorithm, br - Bayes’ regularization, appeared to be one of the best with respect to all analyzed parameters evaluating predicted temperature values.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 8, 8; 7-14
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Surface casting defects inspection using vision system and neural network techniques
Autorzy:
Świłło, S. J.
Perzyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/380699.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nondestructive testing
machined aluminum die castings
image processing algorithms
vision system inspection
neural network
badanie nieniszczące
odlewnictwo ciśnieniowe
algorytm przetwarzania obrazu
inspekcja wizyjna
sieć neuronowa
Opis:
The paper presents a vision based approach and neural network techniques in surface defects inspection and categorization. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks and pores that greatly influence the material’s properties Since the human visual inspection for the surface is slow and expensive, a computer vision system is an alternative solution for the online inspection. The authors present the developed vision system uses an advanced image processing algorithm based on modified Laplacian of Gaussian edge detection method and advanced lighting system. The defect inspection algorithm consists of several parameters that allow the user to specify the sensitivity level at which he can accept the defects in the casting. In addition to the developed image processing algorithm and vision system apparatus, an advanced learning process has been developed, based on neural network techniques. Finally, as an example three groups of defects were investigated demonstrates automatic selection and categorization of the measured defects, such as blowholes, shrinkage porosity and shrinkage cavity.
Źródło:
Archives of Foundry Engineering; 2013, 13, 4; 103-106
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Building computer vision systems using machine learning algorithms
Autorzy:
Boyko, N.
Sokil, N.
Powiązania:
https://bibliotekanauki.pl/articles/410768.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
algorithm
information system
neural network
machine learning
client-server architecture
script
artificial system
machine learning algorithms
algorytm
systemy informacyjne
sieci neuronowe
systemy uczące
architektura klient-serwer
skrypt
Opis:
In this paper theoretic aspects of machine learning system in the field of computer vision is considered. There are presented methods of behavior analysis. There are offered tasks and problems associated with building systems using machine learning algorithm. The paper provides signs of problems that can be solved by using machine learning algorithms There is demonstrated step by step construction of computer vision system. The paper provides the algorithm of solving the problem of binary (two classes) classification for demonstration the machine learning algorithm possibilities in image recognition field, which can recognize the gender of the person on the photo. Aspects related to the search of data processing are also considered. There is analyzed the search of optimal parameters for algorithms. An interpretation of results in machine learning algorithm is provided. Binarization methods in machine learning algorithm are offered. There is analyzed the technology for improving the accuracy of machine learning algorithm. There are proposed ways to improve computer vision system in neural systems. Also there are analyzed large software modules that work using machine learning systems. The article provides prospects of powerful information technologies, which are necessary for the proper data selection in learning and configuration of feature extraction algorithm to create a computer vision system.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2017, 6, 2; 15-20
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies