Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikacja sieci" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Przydatność różnych typów sieci neuronowych w klasyfikacji gleb
Application of different types of the neural networks in soils classification
Autorzy:
Gruszczyński, S.
Powiązania:
https://bibliotekanauki.pl/articles/269264.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
sieci neuronowe
klasyfikacja gleb
neural network
soils classification
Opis:
Zaprezentowano zastosowanie trzech algorytmów sieci neuronowych do klasyfikowania gleb na podstawie cech możliwych do interpretacji z dostępnej, analogowej dokumentacji kartograficznej. Spośród przebadanych algorytmów najlepsze wyniki klasyfikacji dają sieci typu MLP oraz probabilistyczne (PNN). Połączenie wyników działania sieci PNN oraz SOM pozwala na pogłębioną analizę zależności klasyfikacyjnych w obszarze opracowania, polegającą między innymi na zobrazowaniu rozmytych relacji między poszczególnymi kompleksami w terenie
The application of three neural networks algorithm in task soils classification, on the basis of features obtained from analog cartographic documentation, is presented. The MLP (Multi-Layer Perceptron) type net and PNN (Probabilistic Neural Network) give the best classification results among examined algorithms. The PNN and SOM (Self-Organizing Map) combination of net operational results gives more deep classification relations within sphere this study, based among others on fuzzy relationships visualization between complexes in analyzed area
Źródło:
Inżynieria Środowiska / Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie; 2006, 11, 1; 13-25
1426-2908
Pojawia się w:
Inżynieria Środowiska / Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of breast thermal images using artificial neural networks
Autorzy:
Jakubowska, T.
Wiecek, B.
Wysocki, M.
Drews-Peszynski, C.
Strzelecki, M.
Powiązania:
https://bibliotekanauki.pl/articles/333564.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
przetwarzanie termogramów
sieci nuronowe
klasyfikacja
thermal image processing
neural network
classification
Opis:
In this paper we present classification of the thermal images in order to discriminate healthy and pathological cases during breast cancer screening. Different image features and approaches for data reduction and classification have been used to distinguish healthy breast one with malignant tumour. We use image histogram and co-occurrence matrix to get thermal signatures and analyze symmetry between left and right side. The most promised method was based on wavelet transformation and nonlinear neural network classifier. The proposed approach was used in the pilot investigations in the medical centre which is permanently using thermograph for breast cancer screening, as an adjacent method for other classical diagnostic method, such as mammography.
Źródło:
Journal of Medical Informatics & Technologies; 2004, 7; MIP41-50
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The dedicated decision support system in recognition of some uncertain disease entities
Autorzy:
Porwik, P.
Powiązania:
https://bibliotekanauki.pl/articles/333041.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie obrazu
klasyfikacja danych
sieci neuronowe
systemy wspomagania decyzji
image recognition
data classification
neural network
decision support systems
Opis:
This work presents the principles of image recognition, where quality-based methods are applied. The neural networks and additional software have been proposed. This goal was achieved by using non-parametric recognition algorithms. In this paper the two-state hybrid classification method has been proposed, where artificial intelligence algorithm is included. In recognition process, the learning method, selection and optimization of diagnostic parameters have been introduced. The integrated part of the classifier structure is voting mechanism, which indicates incorrect states of the system – for example the unrecognized images. Effectiveness of the system has been shown by means of examples, where ambiguous data have been incorporated – it is very often a practice of medical diagnostics.
Źródło:
Journal of Medical Informatics & Technologies; 2009, 13; 97-100
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies