Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "landfill gas" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Efficiency Analysis of the Generation of Energy in a Biogas CHP System and its Management in a Waste Landfill – Case Study
Autorzy:
Ciuła, Józef
Generowicz, Agnieszka
Gaska, Krzysztof
Gronba-Chyła, Anna
Powiązania:
https://bibliotekanauki.pl/articles/2173248.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
cogeneration
energy efficiency
energy ratio
landfill gas
municipal waste
renewable energy
Opis:
As a waste neutralization facility, the landfill is a kind of bioreactor producing landfill gas or (LFG) - biogas, which should be captured and neutralised for environmental reasons. One of the ways of its utilisation is the combined production of heat and electrical energy in combined heat and power (CHP) cogeneration systems. For that purpose, the assessment of the energy efficiency of a cogeneration unit was undertaken in this work on the basis of the unit performance over the last 5 years. The analysis of the CHP system energy performance demonstrated that the ratios range at the lower limits for units up to 0.5 MW. The lower efficiency of fuel chemical conversion in the CHP plant (0.70) stems from the failure to use the rated thermal and electrical power fully (74.2%), which is caused by the insufficient stream of biogas collected from the landfill (161.46 m3∙h-1). The analysis of the generated energy usage, particularly in terms of heat, has shown a surplus which is not used and therefore is a loss. The proposed solutions in this area should optimize the use of heat generated from the renewable source, i.e. landfill biogas.
Źródło:
Journal of Ecological Engineering; 2022, 23, 7; 143--156
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza możliwości pozyskania energii z odpadów komunalnych
Analysis of energy production possibilities from municipal waste
Autorzy:
Piaskowska-Silarska, M.
Powiązania:
https://bibliotekanauki.pl/articles/282296.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
odpady komunalne
gaz składowiskowy
termiczne przekształcanie odpadów
odgazowanie składowisk odpadów
municipal waste
landfill gas
thermal utilization of waste
degassing of landfill
Opis:
W pierwszej części artykułu przedstawiono właściwości odpadów komunalnych wytwarzanych w Polsce. Ze względu na skład morfologiczny możemy podzielić je na cztery podstawowe grupy: odpady podatne na procesy przekształcania biochemicznego, termicznego, surowce wtórne oraz odpady nieaktywne. Biorąc natomiast pod uwagę miejsce ich powstawania, wyróżniamy odpady wytworzone w gospodarstwach domowych (68,6%), odpady z handlu, małego biznesu, biur, instytucji (26%) oraz usług komunalnych (5,4%). Jak łatwo zauważyć największą grupę stanowią odpady powstające w gospodarstwach domowych, a wśród nich dominują odpady kuchenne i biologiczne oraz papier, tektura i karton. Są to odpady, które można wykorzystywać do produkcji energii - z biogazu i termicznego unieszkodliwiania. W dalszej części artykułu przestawiono uwarunkowania prawne pozyskiwania energii z procesu termicznego przekształcania odpadów komunalnych. Zgodnie z rozporządzeniem Ministra Gospodarki i Pracy (Dz.U. 2005 nr 186, poz. 1553), od 2013 r. będzie obowiązywać zakaz składowania odpadów komunalnych o wartości opałowej większej niż 6 MJ/kg. Zatem część odpadów trafiających obecnie na składowiska powinna być spalana w zakładach termicznego przekształcania odpadów. Aby jednak inwestycje takie miały sens, musi być zapewniona minimalna wydajność spalarni na 60 000 Mg odpadów rocznie, średnia produkcja odpadów przypadająca na jednego mieszkańca - około 300 kg rocznie i odzysk surowców wtórnych na poziomie 25%. Stosując powyższe założenia można określić wymaganą ilość mieszkańców, przy której budowa zakładu termicznego przekształcania odpadów jest uzasadniona, na około 270 000. W punkcie trzecim artykułu omówiono uwarunkowania prawne wykorzystania gazu składowiskowego. Zgodnie z nimi, aktywne odgazowanie z odzyskiem energii zaleca się w przypadku składowiska dostarczającego ilość gazu dostateczną do zapewnienia minimum opłacalności inwestycji. Natomiast odgazowanie pasywne dopuszcza się na składowisku generującym resztkowe ilości gazu, nie zagrażającego środowisku, gdzie zastosowanie aktywnego systemu odgazowania nie jest uzasadnione technicznie i ekonomicznie. Według danych Ośrodka Badawczo-Rozwojowego Ekologii Miast (OBREM), opłacalne jest wykorzystanie energii biogazu, gdy powierzchnia składowiska ma powyżej 3 ha i miąższość złoża wynosi co najmniej 5 m. Najkorzystniejszą metodą pozyskiwania energii, ze względu na dużą sprawność procesu, jest kogeneracja, czyli jednoczesna produkcja energii elektrycznej i cieplnej.
The characteristics of municipal waste generated in Poland are shown in the first part of this paper. Regarding the morphological composition, we can divide such waste into four basic groups: waste able to be biochemically processed, thermally processed, recyclable, and inert waste. The sources of waste generation are as follows: home waste (68%), trade, small business and office (26%), and waste from communal services (5.4%). We can easily see that the majority comes from households, mostly kitchen waste, bio waste, paper, and paperboard. This waste can be used to generate energy from biogas or by thermal processing. The next part of this paper reviews legal regulations concerning energy generation from he thermal utilization of municipal waste. From 2013, the Minister of Economy and Labour ordinance from 7.09.2005 prohibits waste storage of more than 6 MJ/kg of calorific value. Part of this waste should be already being burnt in thermal utilization plants. To achieve profitability, minimal incineration plant efficiency must be 60,000 metric tons of waste yearly, the average waste production per person 300 kg yearly, and recycling at 25%. The minimum surrounding population size per plant should be 270,000 for the thermal utilization plant investment to be profitable. The third part of this paper outlines legal restrictions on landfill gas use. Active landfill degassing with energy recovery is legitimate in cases where a landfill delivers enough gas for installation to become profitable. Passive degassing is allowed in a landfill generating small amounts of gas which doesn’t harm the environment and where applying an active landfill degassing system isn’t technically viable. According to figures from the Eco Town Research and Development Centre (OBREM), the use of biogas energy is profitable if the surface of a landfill is bigger than 3 ha and the deposit has a thickness of at least 5 m. The most effective means of energy generation, because of its processing characteristics, is cogeneration – the simultaneous production of electrical and thermal energy.
Źródło:
Polityka Energetyczna; 2012, 15, 4; 325-336
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Methane oxidation in homogenous soil covers of landfills: a finite element analysis of the influence of gas diffusion coefficient
Autorzy:
Stepniewski, W.
Zygmunt, M.
Powiązania:
https://bibliotekanauki.pl/articles/24950.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Agrofizyki PAN
Tematy:
methanotrophic capacity
environment protection
gas diffusivity
municipal waste
landfill
methane oxidation
modelling
homogenous soil
gas diffusion coefficient
Źródło:
International Agrophysics; 2000, 14, 4
0236-8722
Pojawia się w:
International Agrophysics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Emisja metanu ze składowanych odpadów oraz metody jego oznaczania
Emissions of methane from the landfill and the method of its determination
Autorzy:
Siemiątkowski, G.
Powiązania:
https://bibliotekanauki.pl/articles/392374.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Ceramiki i Materiałów Budowlanych
Tematy:
odpad komunalny
składowisko odpadów
gaz cieplarniany
biogaz
metan
emisja metanu
metoda oznaczania
municipal waste
landfill
greenhouse gas
biogas
methane emission
determination method
Opis:
W artykule scharakteryzowano poziomy emisji metanu. Bardziej szczegółowemu omówieniu poddano źródła emisji metanu – głównie ze składowania odpadów. Przedstawiono także stosowaną, mało dokładną, wskaźnikową metodę oznaczania emisji metanu ze składowania odpadów oraz bardziej dokładne bezpośrednie metody oznaczania potencjału metanu, które są oparte o test fermentacyjny – oznaczanie parametru GB21 oraz o test inkubacyjny – oznaczanie parametru GS21.
The article characterizes the emission levels of methane. A more detailed discussion subjected to the source of methane emissions – mainly from the landfill. The paper presents also applied, less accurate indicative method for determining methane emissions from waste disposal as well as more accurate direct method for determination of the potential of methane, based on fermentation test – determination of parameter GB21 and incubation test – determination of parameter GS21.
Źródło:
Prace Instytutu Ceramiki i Materiałów Budowlanych; 2014, R. 7, nr 16, 16; 78-88
1899-3230
Pojawia się w:
Prace Instytutu Ceramiki i Materiałów Budowlanych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies