Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multilayer neural network" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Application of neural networks to detect eccentricity of induction motors
Autorzy:
Ewert, P.
Powiązania:
https://bibliotekanauki.pl/articles/1193467.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
neural network
general regression neural network
multilayer perceptron
eccentricity
induction motor
Opis:
The possibility of using neural networks to detect eccentricity of induction motors has been presented. A field-circuit model, which was used to generate a diagnostic pattern has been discussed. The formulas describing characteristic fault frequencies for static, dynamic and mixed eccentricity, occurring in the stator current spectrum, have been presented. Teaching and testing data for neural networks based on a preliminary analysis of diagnostic signals (phase currents) have been prepared. Two types of neural networks were discussed: general regression neural network (GRNN) and multilayer perceptron (MLP) neural network. This paper presents the results obtained for each type of the neural network. Developed neural detectors are characterized by high detection effectiveness of induction motor eccentricity.
Źródło:
Power Electronics and Drives; 2017, 2, 37/2; 151-165
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural Network Model for Control of Operating Modes of Crushing and Grinding Complex
Autorzy:
Kalinchyk, Vasyl
Meita, Olexandr
Pobigaylo, Vitalii
Borychenko, Olena
Kalinchyk, Vitalii
Powiązania:
https://bibliotekanauki.pl/articles/2174915.pdf
Data publikacji:
2022
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
classification
modelling
neural network
radial basis function network
RBF
multilayer perceptron
MLP
Opis:
This article investigates the application of neural network models to create automated control systems for industrial processes. We reviewed and analysed works on dispatch control and evaluation of equipment operating modes and the use of artificial neural networks to solve problems of this type. It is shown that the main requirements for identification models are the accuracy of estimation and ease of algorithm implementation. It is shown that artificial neural networks meet the requirements for accuracy of classification problems, ease of execution and speed. We considered the structures of neural networks that can be used to recognise the modes of operation of technological equipment. Application of the model and structure of networks with radial basis functions and multilayer perceptrons for identifying the mode of operation of equipment under given conditions is substantiated. The input conditions for constructing neural network models of two types with a given three-layer structure are offered. The results of training neural models on the model of a multilayer perceptron and a network with radial basis functions are presented. The estimation and comparative analysis of models depending on model parameters are made. It is shown that networks with radial basis functions offer greater accuracy in solving identification problems. The structural scheme of the automated process control system with mode identification based on artificial neural networks is offered.
Źródło:
Rocznik Ochrona Środowiska; 2022, 24; 26--40
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solar air heater performance prediction using artificial neural network technique with relevant input variables
Autorzy:
Ghritlahre, Harish Kumar
Chandrakar, Purvi
Ahmad, Ashfaque
Powiązania:
https://bibliotekanauki.pl/articles/240435.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial neural network
solar air heater
thermal performance
multilayer perceptron
Opis:
Solar air heater (SAH) is an important device for solar energy utilization which is used for space heating, crop drying, timber seasoning etc. Its performance mainly depends on system parameters, operating parameters and meteorological parameters. Many researchers have been used these parameters to predict the performance of SAH by analytical or conventional approach and artificial neural network (ANN) technique, but performance prediction of SAH by using relevant input parameters has not been done so far. Therefore, relevant input parameters have been considered in this study. Total ten parameters were used such as mass flow rate, ambient temperature, wind speed, relative humidity, fluid inlet temperature, fluid mean temperature, plate temperature, wind direction, solar elevation and solar intensity to find out the relevant parameters for ANN prediction. Seven different neural models have been constructed using these parameters. In each model 10 to 20 neurons have been selected to find out the optimal model. The optimal neural models for ANN-I, ANN-II, ANN-III, ANN-IV, ANN-V, ANN-VI and ANN-VII were obtained as 10-17-1, 8-14-1, 6-16-1, 5- 14-1, 4-17-1, 3-16-1 and 2-14-1, respectively. It has been found that ANN-II model with 8-14-1 is the optimal model as compared to other neural models. Values of the sum of squared errors, mean relative error, and coefficient of determination were found to be 0.02138, 1.82% and 0.99387, respectively, which shows that the ANN-II developed with mass flow rate, ambient temperature, inlet and mean temperature of air, plate temperature, wind speed and direction, relative humidity, and relevant input parameters performed better. The above results show that these eight parameters are relevant for prediction.
Źródło:
Archives of Thermodynamics; 2020, 41, 3; 255-282
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting the Energy Consumption of an Industrial Enterprise Based on the Neural Network Model
Autorzy:
Kalinchyk, Vasyl
Meita, Olexandr
Pobigaylo, Vitalii
Kalinchyk, Vitalii
Filyanin, Danylo
Powiązania:
https://bibliotekanauki.pl/articles/2069887.pdf
Data publikacji:
2021
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
electrical load
daily schedule
modelling
neural network
multilayer perceptron
MLP
Opis:
This research paper investigates the application of neural network models for forecasting in energy. The results of forecasting the weekly energy consumption of the enterprise according to the model of a multilayer perceptron at different values of neurons and training algorithms are given. The estimation and comparative analysis of models depending on model parameters is made.
Źródło:
Rocznik Ochrona Środowiska; 2021, 23; 484--492
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of Suspended Sediment Load Using Artificial Neural Network in Khour Al Zubair Port, Iraq
Autorzy:
Hassan, Ayman A.
Ibrahim, Husham T.
Al-Aboodi, Ali H.
Powiązania:
https://bibliotekanauki.pl/articles/24201740.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
suspended sediment concentration
multilayer perceptron
neural network
Khour Al-Zubair port
Basrah city
Opis:
The port of Khour Al-Zubair is located 60.0 km south of the city centre of Basrah; it is also located 105.0 kilometres from the northern tip of the Arabian Gulf. The main goal of this paper is to estimate the concentration of suspended deposit (SSC) in “Khour Al-Zubair” port using a Multilayer Perceptron Neural Network (MLP) based on hydraulic and local boundary parameters while also studying the effect of these parameters on estimating the SSC. Five input parameters (channel width, water depth, discharge, cross-section area, and flow velocity) are used for estimating SSC. Different input hydraulic and local boundary parameter combinations in the three sections (port center, port south, and port north) were used for creating nine models. The use of both hydraulic and local boundary parameters for SSC estimation is very important in the port area for estimating sediment loads without the need for field measurements, which require effort and time.
Źródło:
Journal of Ecological Engineering; 2023, 24, 6; 54--64
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine learning methods applied to sea level predictions in the upper part of a tidal estuary
Autorzy:
Guillou, N.
Chapalain, G.
Powiązania:
https://bibliotekanauki.pl/articles/2078822.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
multiple regression model
artificial neural network
multilayer perceptron
regression function
machine learning algorithm
sea level
Opis:
Sea levels variations in the upper part of estuary are traditionally approached by relying on refined numerical simulations with high computational cost. As an alternative efficient and rapid solution, we assessed here the performances of two types of machine learning algorithms: (i) multiple regression methods based on linear and polynomial regression functions, and (ii) an artificial neural network, the multilayer perceptron. These algorithms were applied to three-year observations of sea levels maxima during high tides in the city of Landerneau, in the upper part of the Elorn estuary (western Brittany, France). Four input variables were considered in relation to tidal and coastal surge effects on sea level: the French tidal coefficient, the atmospheric pressure, the wind velocity and the river discharge. Whereas a part of these input variables derived from large-scale models with coarse spatial resolutions, the different algorithms showed good performances in this local environment, thus being able to capture sea level temporal variations at semi-diurnal and spring-neap time scales. Predictions improved furthermore the assessment of inundation events based so far on the exploitation of observations or numerical simulations in the downstream part of the estuary. Results obtained exhibited finally the weak influences of wind and river discharges on inundation events.
Źródło:
Oceanologia; 2021, 63, 4; 531-544
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of MLP and RBF Neural Networks in the Task of Classifying the Diameters of Water Pipes
Autorzy:
Gvishiani, Zurab
Dawidowicz, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2174907.pdf
Data publikacji:
2022
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
water distribution system
hydraulic calculation
selection of diameter
water pipe
artificial neural network
radial basis function
multilayer perceptron
Opis:
Hydraulic calculations of water distribution systems are currently performed using computer programs. In addition to the basic calculation procedure, modules responsible for evaluating the obtained calculation results are introduced more and more often into the programs. This article presents the results of research on artificial neural networks with a radial base function (RBF) and a multilayer perceptron (MLP), aimed at determining whether they can be used to model the relationship between the variables describing the computational section of the water distribution system and the diameter of the water pipe. The classification capabilities of the RBF and MLP networks were analyzed according to the number of neurons in the hidden layer of the network. A comparative analysis of RBF networks with multilayer perceptron (MLP) networks was performed. The results showed that the MLP networks have much better classification properties and are better suited for the task of assessing the selected diameters of the water pipes.
Źródło:
Rocznik Ochrona Środowiska; 2022, 24; 505--519
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Próba zastosowania ilościowej analizy obrazów TK w różnicowaniu guzów i udarów – badanie wstępne
Examination of the application of quantitative analysis of CT brain images in ischaemic stroke and brain tumour detection – preliminary test
Autorzy:
Chrześcijanek, Beata
Młynarczyk-Kochanowska, Antonina
Strzelecki, Michał
Klimek, Andrzej
Rachalewski, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/1053300.pdf
Data publikacji:
2014
Wydawca:
Medical Communications
Tematy:
udar niedokrwienny
guz
neuroobrazowanie
sztuczna sieć neuronowa
perceptron wielowarstwowy
tomografia komputerowa
ischaemic stroke
tumour
neuroimaging
artificial neural network
multilayer perceptron
computed
tomography
Opis:
Introduction: Neuroimaging is a standard examination implemented for diagnosis of various pathologies of the central nervous system. The fundamental diagnostic procedures in medical imaging of the central nervous system are computed tomography and magnetic resonance imaging. In case of a sudden focal or generalized onset of brain dysfunctions at first we should think about stroke. A very important test if stroke is suspected is computed tomography. In this paper we would like to check if it is possible to distinguish two pathologies of the cerebrum: ischaemic stroke and tumour, using quantitative analysis of selected abnormalities. Material and methods: Analysis is based on comparison of two pathologies (ischaemic stroke and tumour). Two sets of images were prepared. Analysis is performed to distinguish abnormalities observed on computed tomography brain images from healthy tissue. The image analysis includes data conversion, normalization of region of interest, estimation of the number of texture features, features selection based on four different methods of selection and finally classification based on artificial neural network classifier. Results: In the examination, different effectiveness of used methods was observed. Quantitative analysis of selected texture features allows to differentiate two classes of pathologies. Also an important observation is that the artificial neural network can be a useful tool in data classification and analysis. Conclusions: The performed analysis is effective but only for small number of data. That is why it still needs to be conducted on a larger set of data. It will be also necessary to repeat classification a number of times and to perform data validation in order to confirm effectiveness of the presented method. After that we can hope to get really satisfying results.
Wstęp: Neuroobrazowanie jest standardowym badaniem stosowanym w diagnostyce ośrodkowego układu nerwowego (OUN). Podstawowymi narzędziami diagnostycznymi w obrazowaniu OUN są tomografia komputerowa (TK) oraz rezonans magnetyczny. W przypadku wystąpienia nagłych ogniskowych lub uogólnionych objawów neurologicznych należy w pierwszej kolejności podejrzewać udar mózgu. Obecnie badaniem pierwszego rzutu w diagnostyce neuroradiologicznej jest badanie TK. W przedstawionej pracy podjęto próbę sprawdzenia, czy jest możliwa ilościowa analiza obrazów TK, pozwalająca odróżnić zmiany rozrostowe OUN od udarów niedokrwiennych. Materiały i metody: Analizę oparto na porównaniu dwóch patologii OUN: udaru niedokrwiennego oraz zmiany rozrostowej. Ocenie poddano obrazy TK mózgowia, na których wyodrębniono zmianę patologiczną. Podczas kolejnych etapów pracy przeprowadzono: konwersję danych, definiowanie obszarów zainteresowania (ROI), estymację cech tekstury, selekcję cech z zastosowaniem czterech różnych metod oraz klasyfikację opartą na sztucznej sieci neuronowej. Wyniki: Odnotowano różną skuteczność zastosowanych metod, co dało podstawę do stwierdzenia, że ilościowa analiza wybranych cech tekstury obrazu pozwala odgraniczyć klasy przypisane do omawianych patologii, natomiast użycie sztucznych sieci neuronowych do klasyfikacji danych wskazuje na ich skuteczność i przydatność jako narzędzi stosowanych w analizie wybranych danych. Podsumowanie: W sytuacji gdy badanie neuroradiologiczne nie wypada jednoznacznie, a leczenie udaru i guza mózgu różnią się diametralnie, istnieje możliwość zastosowania przedstawionej analizy w celu skrócenia czasu potrzebnego do postawienia właściwej diagnozy. Przedstawione wyniki mają jednak charakter wstępny i wymagają dalszej analizy na większej grupie pacjentów.
Źródło:
Aktualności Neurologiczne; 2014, 14, 2; 89-95
1641-9227
2451-0696
Pojawia się w:
Aktualności Neurologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid predictions of the homogenous properties’ market value with the use of ann
Prognozowanie wartości rynkowej jednorodnych nieruchomości hybrydowym modelem z wykorzystaniem sztucznych sieci neuronowych
Autorzy:
Anysz, Hubert
Podwórna, Monika
Ibadov, Nabi
Lennerts, Kunibert
Dikarev, Kostiantyn
Powiązania:
https://bibliotekanauki.pl/articles/1852660.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
wycena nieruchomości
sieć neuronowa sztuczna
perceptron wielowarstwowy
podejście porównawcze
uczenie maszynowe
model hybrydowy
real estate valuation
artificial neural network
multilayer perceptron
comparative approach
machine learning
hybrid model
Opis:
The homogenous properties – as flats are – have the set of key features that characterizes them. The area of a flat, the number of rooms and storey number where it is located, the technical state of a building, and the state of the vicinity of the blocks of flats assessed. The database comprises 222 flats with their transaction prices on the secondary estate market. The analysed flats are located in a certain quarter of Wrocław city in Poland. The database is large enough to apply machine learning for successful price predictions. Their close locations significantly lower the influence of clients’ assessments of the attractiveness of the location on the flat’s price. The hybrid approach is applied, where classifying precedes the solution of the regression problem. Dependently on the class of flats, the mean absolute percentage error achieved through the calculations presented in the article varies from 4,4 % to 7,8 %. In the classes of flats where the number of cases doesn’t allow for machine predicting, multivariate linear regression is applied. The reliable use of machine learning tools has proved that the automated valuation of homogenous types of properties can produce price predictions with the error low enough for real applications.
Wycena nieruchomości jest złożonym procesem. Rzeczoznawca majątkowy musi być biegły zarówno w naukach ekonomicznych, prawnych, jak i technicznych. W praktyce często zdarzają się przypadki, w których konieczne jest poznanie zakresu wartości nieruchomości w krótkim czasie. Zautomatyzowane modele wyceny (AVM) są kwestionowane przez praktyków, ale nie oznacza to, że nie należy szukać nowych metod wyceny, innych niż te określone w Rozporządzeniu Rady Ministrów z dnia 21 września 2004 r. w sprawie wyceny nieruchomości i sporządzania operatu szacunkowego. Do określenia wartości rynkowej nieruchomości zdefiniowanej w Ustawie z dnia 21 sierpnia 1997 r o gospodarce nieruchomościami, jako „szacunkowa kwota, jaką w dniu wyceny można uzyskać za nieruchomość w transakcji sprzedaży zawieranej na warunkach rynkowych pomiędzy kupującym a sprzedającym, którzy mają stanowczy zamiar zawarcia umowy, działają z rozeznaniem i postępują rozważnie oraz nie znajdują się w sytuacji przymusowej”, najczęściej stosowaną metodą wyceny jest podejście porównawcze polegające na szacowaniu wartości na podstawie ostatnich danych sprzedaży innych podobnych nieruchomości na rynku lokalnym. Takie podejście wymaga aktywnego, rozwiniętego oraz w miarę stabilnego rynku. Rzeczoznawca majątkowy analizuje ceny transakcyjne nieruchomości, które w wystarczającym stopniu są podobne do nieruchomości wycenianej. Analiza atrybutów nieruchomości polega na badaniu nieruchomości pod względem trwałych cech, które mają znaczący wpływ na wartość, w szczególności lokalizację obiektu, jego powierzchnię, położenie w budynku, stan techniczny. W pracy przenalizowano próbkę 222 nieruchomości lokalowych, które były przedmiotem obrotu na wrocławskim rynku wtórnym. Lokalny rynek nieruchomości przyjęto jako nieruchomości lokalowe o powierzchni użytkowej z przedziału od 15 do 95 m2, w budynkach o stanie dobry lub średnim, z obrębu Grabiszyn dzielnicy Fabryczna miasta Wrocław. W pracy przyjęto dwuletni okres analizy, ze względu na w miarę stabilny rynek w okresie 2013-2014 nie uwzględniono czynnika czasu - przyjęto zerowy trend czasowy dla transakcji wolnorynkowych.
Źródło:
Archives of Civil Engineering; 2021, 67, 1; 285-301
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Urban traffic crash analysis using deep learning techniques
Analiza kolizji w ruchu miejskim z wykorzystaniem technik głębokiego uczenia
Autorzy:
Sobhana, Mummaneni
Vemulapalli, Nihitha
Mendu, Gnana Siva Sai Venkatesh
Ginjupalli, Naga Deepika
Dodda, Pragathi
Subramanyam, Rayanoothala Bala Venkata
Powiązania:
https://bibliotekanauki.pl/articles/27315440.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
classification
gated recurrent unit
long-short term memory
multilayer perceptron
recurrent neural network
road accidents
klasyfikacja
pamięć długotrwała
pamięć krótkotrwała
perceptron wielowarstwowy
rekurencyjna sieć neuronowa
wypadki drogowe
Opis:
Road accidents are concerningly increasing in Andhra Pradesh. In 2021, Andhra Pradesh experienced a 20 percent upsurge in road accidents. The state's unfortunate position of being ranked eighth in terms of fatalities, with 8,946 lives lost in 22,311 traffic accidents, underscores the urgent nature of the problem. The significant financial impact on the victims and their families stresses the necessity for effective actions to reduce road accidents.This study proposes a framework that collects accident data from regions, namely Patamata, Penamaluru, Mylavaram, Krishnalanka, Ibrahimpatnam,and Gandhinagar in Vijayawada(India)from 2019 to 2021. The dataset comprises over 12,000 records of accident data. Deep learning techniquesare applied to classify the severity of road accidents into Fatal, Grievous, and Severe Injuries. The classification procedure leverages advanced neural network models, including the Multilayer Perceptron, Long-Short Term Memory, Recurrent Neural Network, and Gated Recurrent Unit. These modelsare trained on the collected data to accurately predict the severity of road accidents. The project study to make important contributions for suggesting proactive measures and policies to reduce the severity and frequency of road accidents in Andhra Pradesh.
Liczba wypadków drogowych w Andhra Pradesh niepokojąco rośnie. W 2021 r. stan Andhra Pradesh odnotował 20% wzrost liczby wypadków drogowych. Niefortunna pozycja stanu, który zajmuje ósme miejsce pod względem liczby ofiar śmiertelnych, z 8946 ofiarami śmiertelnymiw 22311 wypadkach drogowych, podkreśla pilny charakter problemu. Znaczący wymiar finansowy dla ofiari ich rodziny podkreśla konieczność podjęcia skutecznych działań w celu ograniczenia liczby wypadków drogowych. W niniejszym badaniu zaproponowano system gromadzenia danych o wypadkachz regionów Patamata, Penamaluru, Mylavaram, Krishnalanka, Ibrahimpatnam i Gandhinagar w Vijayawada (India) w latach 2019–2021. Zbiór danych obejmuje ponad 12 000 rekordów danych o wypadkach. Techniki głębokiego uczenia są stosowane do klasyfikowania wagi wypadków drogowychna śmiertelne, poważne i ciężkie obrażenia. Procedura klasyfikacji wykorzystuje zaawansowane modele sieci neuronowych, w tymwielowarstwowy perceptron, pamięć długoterminową i krótkoterminową, rekurencyjną sieć neuronową i Gated Recurrent Unit. Modele te są trenowane na zebranych danych w celu dokładnego przewidywania wagi wypadków drogowych. Projekt ma wnieść istotny wkład w sugerowanie proaktywnych środków i polityk mających na celu zmniejszenie dotkliwości i częstotliwości wypadków drogowych w Andhra Pradesh.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 3; 56--63
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies