Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multidimensional data" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Application of multi-parameter data visualization by means of multidimensional scaling to evaluate possibility of coal gasification
Wykorzystanie wizualizacji wielowymiarowych danych przy użyciu skalowania wielowymiarowego do oceny możliwości zgazowania węgla
Autorzy:
Jamróz, D.
Niedoba, T.
Surowiak, A.
Tumidajski, T.
Szostek, R.
Gajer, M.
Powiązania:
https://bibliotekanauki.pl/articles/219920.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
zgazowanie węgla
wizualizacja wielowymiarowa
skalowanie wielowymiarowe
MDS
wielowymiarowe dane
wzbogacanie w osadzarkach
coal gasification
multidimensional visualization
multidimensional scaling
multidimensional data
Opis:
The application of methods drawing upon multi-parameter visualization of data by transformation of multidimensional space into two-dimensional one allow to show multi-parameter data on computer screen. Thanks to that, it is possible to conduct a qualitative analysis of this data in the most natural way for human being, i.e. by the sense of sight. An example of such method of multi-parameter visualization is multidimensional scaling. This method was used in this paper to present and analyze a set of seven-dimensional data obtained from Janina Mining Plant and Wieczorek Coal Mine. It was decided to examine whether the method of multi-parameter data visualization allows to divide the samples space into areas of various applicability to fluidal gasification process. The “Technological applicability card for coals” was used for this purpose [Sobolewski et al., 2012; 2013], in which the key parameters, important and additional ones affecting the gasification process were described.
Metody służące do wizualizacji złożonych, wielowymiarowych danych poprzez transformację przestrzeni wielowymiarowej do dwuwymiarowej umożliwiają prezentację tych danych na ekranie komputera. Tym samym są przystępnym instrumentem analizy zbiorów danych, pozwalającym wykorzystać połączenie naszego wzroku z mocą naszej osobistej sieci neuronowej (mózgu) do wyodrębnienia z danych cech, których zauważenie przy pomocy innych metod może być bardzo trudne. W artykule zastosowano jedną z takich metod – skalowanie wielowymiarowe – w celu sprawdzenia, skuteczności tej metody do analizy próbek węgla ze względu na jego przydatność do procesu zgazowania w kotle fluidalnym. W tym celu pobrano próbki dwóch węgli, z KWK „Wieczorek” (węgiel typu 32) oraz ZG „Janina” (węgiel typu 31.2), które następnie miały być poddane testom pod względem ich przydatności do zgazowania. Każda z próbek została zbadana ze względu na cechy, których określone poziomy są kluczowe oraz wskazane w kontekście procesu zgazowania według „Karty przydatności węgli do zgazowania” (Sobolewski et al., 2012; 2013). Każdy z węgli został rozdzielony na osadzarce pierścieniowej (10 pierścieni, uziarnienie węgla 0-18 mm) w wyniku czego powstało pięć warstw (po 2 pierścienie każda). Następnie każda z warstw została rozsiana na 10 klas ziarnowych. Tak otrzymane produkty zostały poddane technicznej oraz chemicznej analizie (ogółem 50 próbek z ZG „Janina” oraz 49 próbek z KWK „Wieczorek” – klasa ziarnowa 16-18 mm w tej drugiej kopalni nie została uzyskana i pomiar był niemożliwy do zrealizowania. Tym samym otrzymano takie parametry do analizy jak: zawartość siarki, zawartość wodoru, zawartość azotu, zawartość chloru, zawartość węgla organicznego, ciepło spalania oraz zawartość popiołu. W wyniku przeprowadzonych badań oraz porównania ich z wymogami prezentowanymi w „Karcie przydatności węgli do zgazowania” okazało się, że tylko 18 próbek spełnia wszystkie wymogi, z czego aż 17 pochodziło z KWK „Wieczorek”. Postanowiono poddać ocenie wszystkie próbki bardziej złożonej obserwacji – wielowymiarowej analizie danych za pomocą skalowania wielowymiarowego. W rozdziale 3 przedstawiono szczegółowo zastosowaną metodologię analizy wraz z opisem algorytmu. Następnie, w rozdziale 4 przedstawiono wyniki obserwacji przeprowadzonych za pomocą opracowanego w tym celu programu komputerowego, napisanego w języku C++. Rysunki 1-3 przedstawiają sytuację, gdzie dane reprezentujące próbki węgla mniej lub bardziej przydatne do zgazowania zaczynają tworzyć podgrupy. Proces grupowania został przedstawiony etapowo, tzn. rys. 1 prezentuje sytuację wyjściową, Rys. 2 sytuację przy bardzo małej wartości parametru ITER = 5, zaś Rys. 3 najlepszy możliwy widok, otrzymany przy wartości parametru ITER = 340. Widać na tym rysunku, że obrazy punktów reprezentujących próbki węgla bardziej oraz mniej podatnego na zgazowanie zajmują osobne podobszary. Widać, że na całym obszarze rysunku, podobszary te można łatwo od siebie odseparować. Przez to możemy na podstawie tego rysunku stwierdzić, że skalowanie wielowymiarowe pozwala podzielić przestrzeń próbek na obszary o różnej przydatności do procesu zgazowania fluidalnego. Dzięki temu analizując następne, nieznane próbki możemy poprzez ich wizualizację zakwalifikować je do grupy bardziej podatnych na zgazowanie lub mniej podatnych na zgazowanie. Ważne jest to szczególnie dlatego, ponieważ w analizowanej sytuacji próbki węgla bardziej podatnego na zgazowanie zajmują wnętrze siedmiowymiarowego prostopadłościanu – co jest znacznym uproszczeniem. Wynika to bezpośrednio z faktu, iż przyjęte warunki określające przynależność do tej grupy („Karta przydatności Technologicznej węgla”) to proste nierówności przy pomocy których łatwo można sprawdzić taką przynależność. W rzeczywistości, może się jednak okazać, że obszar przynależności może mieć znacznie bardziej skomplikowany kształt. Wtedy na podstawie większej ilości próbek, których przynależność do klasy węgla bardziej podatnego na zgazowanie zostanie stwierdzona empirycznie, można będzie próbować przy pomocy skalowania wielowymiarowego uzyskać podział przestrzeni na obszary reprezentujące próbki węgla bardziej oraz mniej podatnego na zgazowanie. Rys. 4 przedstawia podobny podział, ale bez wzięcia pod uwagę parametru „zawartość chloru”. Również i w tym przypadku próbki węgla mniej lub bardziej podatnego na zgazowanie tworzą wyraźne podgrupy. Przy pominięciu parametru „zawartość chloru” już 78 próbek (37 z ZG „Janina” oraz 41 z KWK „Wieczorek”) z analizowanych 99-ciu spełniałoby wymogi zawarte w „Karcie przydatności węgla do zgazowania”. Rys. 5 przedstawia inne podejście do analizowanych próbek węgla. Tym razem za kryterium podziału przyjęto pochodzenie węgla z KWK „Wieczorek” lub ZG „Janina”, bez rozpatrywania ich w kontekście przydatności do zgazowania. Również i tym razem okazało się, że zastosowana metodologia pozwala stwierdzić możliwość efektywnego rozdzielenia, a tym samym prawidłowego rozpoznania analizowanych próbek węgla. Tym samym dowiedziono, że metoda skalowania wielowymiarowego może być bardzo przydatnym narzędziem podczas wieloparametrycznej analizy próbek różnego typu węgli.
Źródło:
Archives of Mining Sciences; 2017, 62, 3; 445-457
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of multidimensional scaling to classification of various types of coal
Zastosowanie skalowania wielowymiarowego do klasyfikacji różnych typów węgli
Autorzy:
Jamróz, D.
Powiązania:
https://bibliotekanauki.pl/articles/219176.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
skalowanie wielowymiarowe
MDS
wizualizacja danych wielowymiarowych
węgiel
identyfikacja danych
statystyczne metody graficzne
rozpoznawanie obrazów
multidimensional scaling
multidimensional data visualization
coal
identification of data
statistical graphics methods
pattern recognition
Opis:
Visualization of multidimensional data is a new way of statistical analysis of so-called statistical graphical methods. These methods allow to classify some analyzed objects, including their various features. Facing grained materials problems, like coal or ores many characteristics have an influence on the quality of product. In case of coal, many features must be taken into consideration to determine quality of the material. Apart from most obvious characteristics like particle size, particle density or ash contents there are many others which cause significant differences between considered types of material. In the paper the application of Multidimensional Scaling Method is presented which is one of the multidimensional data visualization techniques. To this purpose, sampling of three types of coal was performed, which were 31, 34.2 and 35 (according to Polish classification of coal types). First, the material was screened on sieves and then divided into density fractions. Next step was to analyze chemically the obtained particle and size fractions of researched coal. Then, the Multidimensional Scaling Method was applied to visualize the investigated set of data. It was proved that the applied methodology allows to identify certain coal types efficiently and can be used as a qualitative criterion for grained materials. However, it was impossible to achieve such identification comparing all three types of coal together. The Multidimensional Scaling Method is new technique of data analysis concerning widely understood mineral processing.
Surowce mineralne, które podlegają wzbogacaniu w celu ich lepszego wykorzystania mogą być charakteryzowane wieloma wskaźnikami opisującymi ich, interesujące przeróbkarza, cechy. Podstawowymi cechami są wielkość ziaren oraz ich gęstość, które decydują o przebiegu rozdziału zbiorów ziaren (nadaw) i efektach takiego rozdziału. Rozdział prowadzi się z reguły, w celu uzyskania produktów o zróżnicowanych wartościach średnich wybranej cechy, która zwykle charakteryzowana jest zawartością określonego składnika surowca wyznaczoną na drodze analiz chemicznych. Takie podejście do surowca mineralnego prowadzi do potraktowania go jako wielowymiarowego wektora X = [X1, …, Xn]. Zasadniczym problemem jest także wybór jednostki populacji generalnej (ziarno, jednostka objętości lub masy), co może decydować o określeniu charakteru wielowymiarowych powiązań cech wektora X. Takimi kierunkami charakteryzowania mogą być wielowymiarowe rozkłady wektora losowego X wraz ze wszystkimi konsekwencjami metody (Lyman, 1993; Niedoba, 2009; 2011; Olejnik et al., 2010; Niedoba i Surowiak, 2012), wielowymiarowe równania regresji wraz z analizą macierzy współczynników korelacji liniowej oraz korelacji cząstkowej (Niedoba, 2013c), analiza czynnikowa (Tumidajski i Saramak, 2009), czy metody wielowymiarowej wizualizacji danych, będące tematem niniejszego artykułu. Biorąc pod uwagę analizę korelacji pomiędzy badanymi cechami materiałów uziarnionych (węgli) można zidentyfikować jakie jego cechy są ze sobą istotnie powiązane. Jest to swoiste preludium do wytypowania, które cechy węgla powodują istotne różnice pomiędzy jego typami. W artykule poddano badaniu trzy typy węgla, według polskiej klasyfikacji - węgle 31, 34.2 oraz 35, pochodzące z trzech różnych kopalni Górnośląskiego Okręgu Przemysłowego. Można powiedzieć, że z punktu widzenia ich jakości były to węgle energetyczne, semi-koksujące oraz koksujące. Każdy z tych węgli został poddany podziałowi na klasy ziarnowe, przy zastosowaniu odpowiedniego zestawu sit. Następnie każdą z otrzymanych klas ziarnowych rozdzielono w cieczach ciężkich na frakcje densymetryczne. Tak otrzymane klaso-frakcje zostały dodatkowo poddane analizie chemicznej ze względu na szereg cech, tj. ciepło spalania, zawartość siarki, zawartość substancji lotnych, zawartość popiołu, miąższość. Wyniki analiz dla wybranej klasy ziarnowej przedstawiono w tabeli 1. Tym samym otrzymano siedmiowymiarowy zestaw danych, który postanowiono poddać wielowymiarowej wizualizacji za pomocą metody skalowania wielowymiarowego. Metoda skalowania wielowymiarowego (multidimensional scaling, MDS) jest jedną z nowoczesnych metod wizualizacji danych. Tego typu metody są wskazane zwłaszcza w sytuacji gdy ma się do czynienia z zestawem skomplikowanych i złożonych danych. Skalowanie wielowymiarowe jest odwzorowaniem przestrzeni n-wymiarowej w przestrzeń m-wymiarową. Oparte jest na obliczaniu odległości pomiędzy każdą parą n-wymiarowych punktów. Na podstawie tych odległości rozważana metoda ustala wzajemne położenie obrazów tych punktów w docelowej przestrzeni m-wymiarowej. Niech dij oznacza odległość pomiędzy n-wymiarowymi punktami nr i oraz j. Skalowanie wielowymiarowe polega na takim rozmieszczeniu punktów w przestrzeni m-wymiarowej, by odległość Dij liczona w tej przestrzeni pomiędzy odwzorowanymi punktami nr i oraz j była jak najbardziej zbliżona do dij. Rozdział 4 zawiera wyniki eksperymentów. Na rysunkach 1-4 widać, w jaki sposób wzrasta grupowanie punktów reprezentujących trzy różne klasy węgla (31, 34.2 oraz 35) wraz ze wzrostem parametru ITER. Widać, że punkty będące obrazami danych reprezentujących te same klasy węgla zaczynają zajmować osobne podobszary oraz zaczynają się grupować. Czytelność podziału przestrzeni rośnie wraz ze zwiększeniem parametru ITER, więc wraz z dokładniejszym dopasowaniem odległości obrazów punktów Dij w przestrzeni 2-wymiarowej do oryginalnych odległości dij pomiędzy punktami w przestrzeni n-wymiarowej. Na rysunku 4 pokazano najbardziej czytelny wynik, jaki udało się uzyskać dla danych zawierających trzy typy węgla 31, 34.2 oraz 35. Nastąpiło to przy parametrze ITER = 793. Widać wyraźnie, że obrazy punktów danych reprezentujących próbki węgla danego typu gromadzą się w skupiskach. Można zaobserwować, że na prawie całym obszarze rysunku, skupiska te można od siebie odseparować. Jednak w niektórych częściach przestrzeni obrazy punktów reprezentujących różne klasy węgla zachodzą na siebie. Przez to nie możemy na podstawie tego rysunku stwierdzić, że analizowane dane pozwalają na prawidłową klasyfikację typów węgla. Postanowiono więc przeanalizować dane reprezentujące różne typy węgla parami. Na rysunkach 5-7 przedstawiono parami węgle typu, odpowiednio, 34.2 i 35 (Rys. 5), 31 i 34.2 (Rys. 6) oraz 31 i 35 (Rys. 7). Na każdym z tych rysunków widać czytelnie, że obrazy punktów reprezentujących próbki różnych typów węgla gromadzą się w skupiskach, które łatwo można od siebie odseparować. Przeprowadzona wizualizacja wielowymiarowa przy użyciu skalowania wielowymiarowego pozwala więc stwierdzić, że informacje zawarte w analizowanych siedmiowymiarowych danych są wystarczające do prawidłowej klasyfikacji typów węgla 31, 34.2 oraz 35.
Źródło:
Archives of Mining Sciences; 2014, 59, 2; 413-425
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multidimensional Scaling in Economic Research
Wielowymiarowe skalowanie w badaniach ekonomicznych
Autorzy:
Biela, Adam
Powiązania:
https://bibliotekanauki.pl/articles/904915.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
multidimensional scaling
theory of data decision analysis
Opis:
A relationship between the theoretical terms and the observational ones, called also a perceptual or observational, is essential for scientific research of empirical type, including social sciences and economic sciences. This relationship cannot be clarified in terms of a complete definition but only by a partial definition. This methodological truth is well known since R. Carnap's works. Later on it was developed in methodology of sciences by the Polish logicians: Przełęcki, Poznański and Kamiński. Multivariable techniques are necessary when one wants to define the relationships between variables in economic and social sciences. However, the results obtained in such analysis are often unsatisfactory because the residual variance is too large. Multidimensional scaling proposes quite a different methodological approach for seeking the relationship between the theoretical terms and the observational ones. This paper aims: (1) to show what kind of methodological proposition is multidimensional scaling; (2) to show what are the possible directions of applying multidimensional scaling to social and economic analysis; (3) to define the multidimensional character of decision analysis.
W badaniach naukowych typu empirycznego (do których należą również nauki społeczne i ekonomiczne) istotne znaczenie ma określenie związku pomiędzy terminami teoretycznymi a terminami empirycznymi. Związku tego nie da się ustalić w postaci definicji zupełnych, lecz tylko i wyłącznie przez definicje cząstkowe. Ta prawda znana jest już od czasu prac R. Carnapa, a została utrwalona i rozwinięta w metodologii nauk przez polskich logików: Przełęckiego, Poznańskiego, Kamińskiego. W określaniu związków pomiędzy analizowanymi zmiennymi w naukach społecznych i ekonomicznych konieczne jest stosowanie technik wielozmiennowych. Wyniki uzyskanych analiz nie są jednak zadowalające z uwagi na ich zbyt wielką wariancję resztową. Nieco inne podejście metodologiczne w poszukiwaniu związku między terminami teoretycznymi i empirycznymi proponuje skalowanie wielowymiarowe. Artykuł omawia założenia metodologiczne skalowania wielowymiarowego, teorię danych С. H. Coombsa (1964) jako podstawę logiczną tego skalowania oraz przydatność tej metody w analizie decyzyjnej. Wskazano, iż skalowanie wielowymiarowe może okazać się przydatne w pierwszych etapach pracy badawczej, eksperckiej, analitycznej czy aplikacyjnej, gdy należy usystematyzować zebrane dane i na tej podstawie przystąpić dopiero do formułowania hipotez, sądów, diagnoz, ocen. Istnieje jeszcze jedna możliwość wykorzystania skalowania wielowymiarowego, a jest nią mianowicie integrowanie różnych opinii oraz ekspertyz w przedmiotowej kwestii.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2004, 175
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Switch preference analysis by the drift vector method
Analiza zmian preferencji z wykorzystaniem metody wektorów dryfu
Autorzy:
Zaborski, Artur
Powiązania:
https://bibliotekanauki.pl/articles/654523.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
analiza preferencji
skalowanie wielowymiarowe
dane asymetryczne
wektory dryfu
preference analysis
multidimensional scaling
asymmetric data
drift vectors
Opis:
Punktem wyjścia w skalowaniu wielowymiarowym jest symetryczna macierz niepodobieństw. Jednak macierz danych o zmianach preferencji (np. prawdopodobieństwo, że konsument dokonuje zakupu marki j pod warunkiem, że przy wcześniejszych zakupach była to marka i, liczba osób deklarujących, że marka j jest przez nich najbardziej preferowana, mimo że we wcześniejszym okresie była to marka i i in.) nie jest symetryczna. Dla takich danych uśrednienie odpowiednich wartości niepodobieństw prowadzi do utraty cennych informacji dotyczących analizowanego zjawiska, stąd konieczność stosowania metod właściwych dla danych niesymetrycznych. Spośród wybranych metod niesymetrycznego skalowania wielowymiarowego szczególną uwagę zwrócono na metodę wektorów dryfu. Metoda ta umożliwia równoczesną prezentację na mapie percepcyjnej konfiguracji punktów reprezentujących analizowane obiekty, jak również wektorów wskazujących kierunek i siłę zmian zachodzących w preferencjach respondentów.
The matrix of  switch preference data (e.g. one’s preference for brand j, given that one has already defined his/her first choice for brand i) is not symmetric. The averaging of  appropriate off-diagonal proximity entries for such data leads to the loss of information, hence the necessity to use appropriate methods for asymmetric data. Among the chosen methods of asymmetric multidimensional scaling, particular attention was paid to the drift vectors method. This method enables to present simultaneously on the perceptual map both the configuration of points representing the analyzed objects and the vectors indicating the direction and the strength of changes in the respondents preferences.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2015, 3, 314
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies