Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Analiza stanu" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Analiza wpływu temperatury na zmianę parametrów dynamicznych stalowej ramy portalowej
Analysis of the effect of temperature on the change of dynamic parameters of a two-storey steel portal frame
Autorzy:
Ziaja, D.
Miller, B.
Powiązania:
https://bibliotekanauki.pl/articles/104537.pdf
Data publikacji:
2017
Wydawca:
Politechnika Rzeszowska im. Ignacego Łukasiewicza. Oficyna Wydawnicza
Tematy:
monitorowanie stanu
konstrukcja
SHM
analiza modalna
structure
health monitoring
modal analysis
Opis:
Jedną z nieniszczących metod detekcji uszkodzeń konstrukcji jest obserwacja zmian jej parametrów dynamicznych. Postacie drgań swobodnych i odpowiadające im częstotliwości można otrzymać w wyniku analizy modalnej na podstawie pomiaru przyspieszeń wybranych punktów układu, będących odpowiedzią na znane wymuszenie. Zmiany parametrów dynamicznych zależą nie tylko od stanu konstrukcji, ale również od czynników zewnętrznych towarzyszących pomiarom. W artykule przedstawiono wpływ temperatury na zmiany parametrów dynamicznych układu na przykładzie dwukondygnacyjnej, stalowej ramy portalowej oraz porównano ich wielkość ze zmianami wywołanymi symulowanym uszkodzeniem w postaci luzowania łączników w połączeniach rygiel-słup.
One of the non-destructive testing methods is damage detection based on changes in dynamic parameters of the structure. For this purpose modal analysis could be used, where natural frequencies and forms are calculated using measured data. During experiment an examined structure is excited by external force with known value, and its vibration (accelerations in some selected points) are measured. This method was used in presented research. Unfortunately not only material characteristics or geometric and static feature of the system have an influence of the dynamic parameters. Also the external conditions during measurements can change the dynamic response of the structure. The aim of this subject was checking, is temperature affect on the dynamic parameters and how big are the changes, the source of which is the temperature. To evaluate the scale of described changes, in a laboratory model of two-storey steel portal frame, in each of beam-tocolumn connection separately, four from eight bolts were loosed. This action had to simulate the damage of the structure. In this paper the effects of temperature and simulated damages were compared.
Źródło:
Czasopismo Inżynierii Lądowej, Środowiska i Architektury; 2017, 64, 2/II; 5-16
2300-5130
2300-8903
Pojawia się w:
Czasopismo Inżynierii Lądowej, Środowiska i Architektury
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting motor oil condition using artificial neural networks and principal component analysis
Prognozowanie stanu oleju silnikowego za pomocą sztucznych sieci neuronowych i analizy składowych głównych
Autorzy:
Rodrigues, Joao
Costa, Ines
Farinha, J. Torres
Mendes, Mateus
Margalho, Luis
Powiązania:
https://bibliotekanauki.pl/articles/1841873.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
condition monitoring
oil analysis
multivariate analysis
predictive maintenance
monitorowanie stanu
analiza oleju
analiza wielowymiarowa
konserwacja predykcyjna
Opis:
The safety and performance of engines such as Diesel, gas or even wind turbines depends on the quality and condition of the lubricant oil. Assessment of engine oil condition is done based on more than twenty variables that have, individually, variations that depend on the engines’ behaviour, type and other factors. The present paper describes a model to automatically classify the oil condition, using Artificial Neural Networks and Principal Component Analysis. The study was done using data obtained from two passenger bus companies in a country of Southern Europe. The results show the importance of each variable monitored for determining the ideal time to change oil. In many cases, it may be possible to enlarge intervals between maintenance interventions, while in other cases the oil passed the ideal change point.
Bezpieczeństwo i wydajność silników takich, jak silniki Diesla czy gazowe, a nawet turbiny wiatrowe, zależą od jakości i stanu oleju smarowego. Stanu oleju silnikowego ocenia się na podstawie ponad dwudziestu zmiennych, z których każda ulega wahaniom w zależności od typu i zachowania silnika oraz innych czynników. W niniejszym artykule opisano model, który pozwala na automatyczną klasyfikację stanu oleju, z wykorzystaniem sztucznych sieci neuronowych i analizy składowych głównych. Badania przeprowadzono na podstawie danych uzyskanych od dwóch przewoźników pasażerskich działających na terenie jednego z krajów położonych na południu Europy. Wyniki pokazują, że każda z monitorowanych zmiennych ma znaczenie dla określenia idealnego czasu na wymianę oleju. Podczas gdy w wielu przypadkach w badanych przedsiębiorstwach możliwe było zwiększenie odstępów czasowych między działaniami konserwacyjnymi, w innych, idealny moment wymiany oleju został przekroczony.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 3; 440-448
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Novel intuitive hierarchical structure for condition monitoring system of wind turbines
Nowatorska intuicyjna struktura hierarchiczna systemu monitorowania stanu turbin wiatrowych
Autorzy:
Barszcz, T.
Strączkiewicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/328414.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
data fusion
condition monitoring
fault detection
fault identification
vibration
wind turbines
integracja danych
monitorowanie stanu
wykrywanie uszkodzenia
identyfikacja uszkodzenia
analiza drgań
turbina wiatrowa
Opis:
The field of condition monitoring (CM) systems has developed significantly in recent decade. Due to constant improvement of embedded computing, complex vibration data processing can be now implemented for a much larger group of machines, e.g. wind turbines. One of the key outcomes of this process is increase in the number of signal features calculated online. Instead of a dozen of broadband values, we now have more than a hundred for a typical wind turbine. Such a situation creates information overload for the operators. On one hand, it is now possible to detect machine failure at an early stage, but on the other – a person monitoring a few dozens of turbines, each generating over a hundred features is not able to properly organize all the information from CM systems. Therefore, we have proposed the hierarchical informational structure for condition monitoring system of wind turbines, based on the data fusion methods. The information about feature values and statuses is combined into higher levels, e.g. main bearing, gearbox and generator together with the information about its severity and novelty.
Na przestrzeni ostatniego dziesięciolecia zaobserwować można było szczególny rozwój na polu monitorowania stanu maszyn i urządzeń. Stało się tak dzięki wykorzystaniu bardziej zaawansowanych systemów wbudowanych oraz skomplikowanych algorytmów przetwarzania sygnałów drgań, które obecnie mogą być zastosowane do oceny stanu znacznie większej grupy maszyn, takich jak np. turbiny wiatrowe. Jednym z najważniejszych efektów tego procesu jest zwiększenie ilości wskaźników diagnostycznych, które mogą zostać obliczone w czasie rzeczywistym – zamiast kilkunastu wartości szerokopasmowych, obecnie otrzymuje się ich ponad sto dla typowej turbiny wiatrowej. W rezultacie prowadzi to do przeciążenia ilością informacji, jakie jest stanie przetworzyć wykwalifikowany pracownik utrzymania ruchu. Z jednej strony, istnieje obecnie możliwość wykrycia uszkodzenia maszyny w najwcześniejszym jego stadium, z drugiej natomiast – inżynier utrzymania ruchu monitorujący kilkadziesiąt turbin, z których każda generuje ponad sto wskaźników informujących o stanie maszyny, nie jest zdolny do właściwej oceny wszystkich informacji z systemu diagnostycznego. W związku z tym, zaproponowana została hierarchiczna struktura informacyjna dla systemów monitorowania stany turbin wiatrowych oparta na metodach integracji danych. Informacja o wartościach oraz stanach wskaźników diagnostycznych łączy się na wyższych poziomach, tj. łożyska głównego, przekładni oraz generatora razem z informacją o ich o ważności oraz aktualności.
Źródło:
Diagnostyka; 2013, 14, 3; 53-60
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies