Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "strength ratio" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Badanie cech mechanicznych porowatego gipsu
The study of the mechanical properties of the porous gypsum
Autorzy:
Gontarz, J.
Podgórski, J.
Powiązania:
https://bibliotekanauki.pl/articles/390149.pdf
Data publikacji:
2015
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
cechy mechaniczne gipsu
wytrzymałość na ściskanie
wytrzymałość na rozciąganie
moduł Younga
współczynnik Poissona
gips porowaty
mechanical properties of gypsum
compressive strength
tensile strength
Young's modulus
Poisson's ratio
porous gypsum
Opis:
W pracy przedstawiono wyniki badań mechanicznych porowatego gipsu. Materiał do badań pozyskano z płyt gipsowych Pro-Monta o grubości 100mm. Wykonano badania ściskania próbek sześciennych, na podstawie których określono wartość wytrzymałości na ściskanie, współczynnik Poissona i moduł Younga. Wytrzymałość na rozciąganie określono na podstawie próby trójpunktowego zginania beleczki o przekroju prostokątnym. Wyznaczono także współczynniki tarcia powierzchni wygładzonej próbki wyciętej z płyty Pro-Monta oraz surowej powierzchni (po przecięciu płyty) o powierzchnię podkładki wykonanej z płyty pilśniowej. Porowatość materiału próbek określono standardową metodą normową. Wartości parametrów mechanicznych materiału mogą być przydatne w próbach modelowania zjawisk zniszczenia i odkształcenia materiału podejmowanych metodami analitycznymi a także numerycznymi.
The paper presents the laboratory test results of the mechanical properties of porous gypsum. Material for the study was obtained from gypsum Pro-Monta plate of 100mm thick. Based on the compression test of cubic samples, following mechanical properties were determined: compressive strength, Poisson's ratio and Young's modulus. Tensile strength was determined based on three-point bending test of rectangular cross section sample. Also a friction coefficients were investigated as follows: between the smoothed surface of the sample and a fiberboard pad, between a rough surfaces (after cutting) and fiberboard pad. A porosity of the material samples was determined using standard method. The material’s mechanical property values can be useful for modeling destruction and deformation of a porous gypsum undertaken by analytical and numerical methods.
Źródło:
Budownictwo i Architektura; 2015, 14, 4; 43-54
1899-0665
Pojawia się w:
Budownictwo i Architektura
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ wysokiego ciśnienia i temperatury na wartości modułu Younga i współczynnika Poissona w wybranych typach skał
Influence of high pressure and temperature on Young modulus and Poisson ratio values for selected rock types
Autorzy:
Domonik, A.
Powiązania:
https://bibliotekanauki.pl/articles/2063064.pdf
Data publikacji:
2011
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
moduł Younga
współczynnik Poissona
wysoka temperatura
wysokie ciśnienie
wytrzymałość
odkształcalność
Young modulus
Poisson ratio
high temperature
high pressure
strength
strain
Opis:
W pracy przedstawiono wpływ wysokiego ciśnienia i temperatury na zmiany wartości statycznego modułu Younga (Est) i statycznego współczynnika Poissona (νst) w wybranych odmianach litologicznych skał. Wartości tych stałych materiałowych zmieniają się wraz ze wzrostem ciśnienia (P) i temperatury (T) w zależności od odmiany litologicznej. W piaskowcach występuje generalny trend – wartość modułu Younga rośnie wraz z głębokością. Podobna tendencja występuje w przypadku granitu. Na wartość modułu Younga w dolomitach zmiany ciśnienia i temperatury nie wpływają natomiast znacząco. Z kolei w anhydrytach obserwuje się bardzo duże oscylacje wartości i znaczne rozrzuty parametru w zależności od głębokości. W bazaltach na dużej głębokości (2000 m) obserwuje się zmianę trendu z rosnącego na malejący. Natomiast dla statycznego współczynnika Poissona (νst) nie obserwuje się wyraźnych trendów. Wartości tego współczynnika nie zależną ani od głębokości, ani od temperatury.
The study presents and discusses the influence of high pressure and temperature on changes of the value of static Young modulus (Est) and static Poisson ratio ( st) for selected lithological types. The values of these material constants are changing with increasing pressure and temperature in different ways depending on lithological types. For sandstones a general trend is observed – the value of Young modulus increases with depth. Similar tendency might be observed in case of granites. Changes of pressure and temperature do not affect dolomites significantly. For anhydrite high variations of Young modulus are observed depending on depth. For basalts at high depth (2000 m) increasing trend inverts into decreasing. Static Poisson ratio ( Vst) does not have clear trends. The values of the ratio do not depend on temperature and depth as well.
Źródło:
Biuletyn Państwowego Instytutu Geologicznego; 2011, 446 (1); 117--122
0867-6143
Pojawia się w:
Biuletyn Państwowego Instytutu Geologicznego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Moduł sprężystości wzdłużnej blachy stalowej z perforacją prostą
The modulus of elasticity of steel sheet with right pattern of perforation
Autorzy:
Muzykiewicz, W.
Wieczorek, M.
Mroczkowski, M.
Pałka, P.
Kuczek, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/212010.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Obróbki Plastycznej
Tematy:
moduł sprężystości wzdłużnej
moduł Younga
własności wytrzymałościowe
blacha perforowana
stal DC01
wskaźnik ubytku masy
modulus of elasticity
Young's modulus
strength properties
perforated metal sheet
DC01 steel
mass loss ratio
Opis:
Blachy perforowane należą do materiałów inżynierskich o szerokiej palecie coraz bardziej zaawansowanych zastosowań. Wymaga to dobrego rozpoznania ich właściwości, ich specyficznych w stosunku do pełnej blachy cech. W pracy przedstawiono wyniki badań modułu sprężystości wzdłużnej (modułu Younga) oraz własności mechanicznych, zwłaszcza wytrzymałościowych, blachy stalowej DC01 z prostym układem otworów okrągłych o średnicy równej szerokości mostu między otworami. Materiałem odniesienia była blacha pełna tego samego gatunku i grubości. Moduł Younga wyznaczono w oparciu o statyczną próbę rozciągania materiału w zakresie sprężystym, z wykorzystaniem ekstensometru dwuosiowego firmy Instron o odpowiedniej rozdzielczości pomiarowej. Przedyskutowano niejednorodność rozkładu wartości modułu sprężystości wzdłużnej w płaszczyźnie blachy na tle anizotropii własności mechanicznych, wywołanej kierunkowością cech geometrycznych siatki otworów. Wyższe wartości występują w kierunkach obciążenia prostopadłych do kierunku najgęstszego upakowania otworów. W przypadku perforacji prostej są to kierunki wyznaczone przez boki elementarnego kwadratu siatki, z reguły pokrywające się z kierunkiem walcowania blachy (0º) i poprzecznym (90º). Pokazano wpływ sposobu wyznaczania charakterystyk naprężeniowych blachy perforowanej na ich wartość i stopień niejednorodności. Odniesienie obciążenia zewnętrznego do czynnego przekroju poprzecznego rozciąganej próbki (do powierzchni mostów w płaszczyźnie prostopadłej do kierunku obciążenia) daje wartości znacznie wyższe od wyznaczonych dla przekroju całkowitego, a niejednorodność ich rozkładu w płaszczyźnie blachy jest większa. W artykule oceniono również wpływ perforacji na obniżenie wartości modułu Younga i własności wytrzymałościowych blachy perforowanej z uwzględnieniem wskaźnika masy. Pozwala to na trafniejszą ocenę blachy perforowanej jako alternatywnego materiału konstrukcyjnego. Zaproponowano sposób określania wskaźnika ubytku masy blachy perforowanej dla przypadku tego samego materiału i tej samej grubości blachy.
Perforated sheet is among engineering materials that have a wide range of increasingly advanced applications. This requires good identification of the properties of such materials and their specific features, compared to solid sheet. This article presents the results of tests of the modulus of elasticity (Young’s modulus) as well as of mechanical properties, particularly strength properties, of DC01 steel sheet with a right pattern of round holes with a diameter equal to the width of the bridge between holes. Solid sheet of the same grade and thickness served as the reference material. Young’s modulus was determined on the basis of a static tensile test of the material within the elastic range, with the use of a biaxial extensometer from the Instron company with the appropriate resolution of measurement. The anisotropic distribution of the value of the modulus of elasticity in the plane of the sheet was discussed on the background of the anisotropy of mechanical properties caused by the directionality of the geometrical features of the grid of holes. Higher values occur in loading directions perpendicular to the direction of the greatest hole density. In the case of a right perforation pattern, these are the directions determined by the sides of the elementary square of the grid, corresponding to the sheet rolling direction (0º) and transverse direction (90º) as a rule. The influence of the method of determining stress characteristics of perforated sheet on their value and degree of inhomogeneity was demonstrated. Dividing external load by the active cross-section of the specimen subjected to tension (by the surface of bridges in the plane perpendicular to the loading direction) yields values significantly greater than those determined for the full cross-section, and the anisotropy of their distribution in the plane of the sheet is greater. This article also evaluates the impact of perforation on reduction of Young’s modulus and strength properties of perforated sheet, accounting for the mass ratio. This allows for more accurate assessment of perforated sheet as an alternative constructional material. A method for determining the mass loss ratio of perforated sheet for the case of the same material and the same sheet thickness is proposed.
Źródło:
Obróbka Plastyczna Metali; 2016, 27, 4; 283-300
0867-2628
Pojawia się w:
Obróbka Plastyczna Metali
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Changes of selected structural and mechanical properties of the Strzelin granites as induced by thermal loads
Wpływ obciążeń termicznych na zmiany niektórych strukturalnych i mechanicznych właściwości granitów strzelińskich
Autorzy:
Nowakowski, A.
Młynarczuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/219766.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
właściwości skał
struktura skał
obciążenie termiczne
spękania
prędkość fali dźwiękowej
porowatość
przepuszczalność
wytrzymałość na jednoosiowe ściskanie
moduł Younga
współczynnik Poissona
rock properties
rock structure
thermal load
cracks
sound wave velocity
porosity
permeability
compressive strength
Young modulus
Poisson ratio
Opis:
Temperature is one of the basic factors influencing physical and structural properties of rocks. A quantitative and qualitative description of this influence becomes essential in underground construction and, in particular, in the construction of various underground storage facilities, including nuclear waste repositories. The present paper discusses the effects of temperature changes on selected mechanical and structural parameters of the Strzelin granites. Its authors focused on analyzing the changes of granite properties that accompany rapid temperature changes, for temperatures lower than 573ºC, which is the value at which the β - α phase transition in quartz occurs. Some of the criteria for selecting the temperature range were the results of measurements carried out at nuclear waste repositories. It was demonstrated that, as a result of the adopted procedure of heating and cooling of samples, the examined rock starts to reveal measurable structural changes, which, in turn, induces vital changes of its selected mechanical properties. In particular, it was shown that one of the quantities describing the structure of the rock - namely, the fracture network - grew significantly. As a consequence, vital changes could be observed in the following physical quantities characterizing the rock: primary wave velocity (vp), permeability coefficient (k), total porosity (n) and fracture porosity (η), limit of compressive strength (Rσ1) and the accompanying deformation (Rε1), Young’s modulus (E), and Poisson’s ratio (ν).
Wśród wielu czynników wpływających na właściwości fizyczne i strukturalne skał jednym z najważniejszych jest bez wątpienia temperatura. Jej podwyższenie lub obniżenie może prowadzić do zmian struktury, spowodować przemiany fazowe składników, zmieniać skład chemiczny a wreszcie, stan skupienia skały. Procesy te mogą więc w istotny sposób zmienić właściwości fizyczne skały, co jest istotne między innymi z punktu widzenia szeroko rozumianego budownictwa podziemnego. Zmiany temperatury skały mogą wynikać z warunków naturalnych, w jakich się ona znajduje lub być konsekwencją działalności człowieka. Szczególnym przypadkiem takiej działalności jest budowa różnego typu składowisk podziemnych czy to magazynowych (np. magazyny paliw płynnych) czy też „podziemnych śmietników” na różnego rodzaju odpady, także promieniotwórcze. Artykuł skupia się na badaniach wpływu zmian temperatury na wybrane parametry mechaniczne i strukturalne granitów ze Strzelina. Autorzy skoncentrowali się na analizie zmian właściwości tych skał towarzyszących szybkim zmianom temperatury, w zakresie od temperatury pokojowej do 573ºC, czyli do temperatury, przy której zachodzi przemiana fazowa kwarcu β - α. Badania prowadzono na dwóch odmianach granitoidów z masywu Strzelin-Žulowa. Jedna z nich to odmiana „młodszą”, tzw. normalna, o charakterze adamellitu a druga to odmiana „starszą” wykazującą podobieństwo do gnejsów. Na potrzeby niniejszej pracy granit normalny nazywano granitem gruboziarnistym, a granit gnejsowaty - drobnoziarnistym. Procedura badawcza polegała na tym, że walcowe próbki skal umieszczano w piecu nagrzanym do zadanej temperatury, celem wywołania „szoku” termicznego. Stosowano temperatury 100, 200, 300 i 500 stopni Celsjusza. Po upływie 60 minut piec, w którym znajdowała się próbka wyłączano i stygł on wraz z próbką do temperatury pokojowej. Przyjęty czas wygrzewania miał zapewnić równomierne nagrzanie próbki w całej jej objętości. Wyznaczony on został na podstawie pomiarów przewodnictwa temperaturowego. Wyniki badań mikroskopowych przeprowadzone dla granitów wygrzewanych w opisany sposób wskazują, że istotną zmianą strukturalną jest powstanie nowych i (lub) rozrost już istniejących spękań. W pracy zaprezentowano wyniki badań ilościowych, które świadczą o tym, że zastosowana procedura grzania szokowego pociąga ze sobą wzrost spękań rozumiany zarówno jako wzrost ich długości jak i rozwartości a w konsekwencji ich powierzchni (patrz rys. 6), Ponadto spękania te są praktycznie niezauważalne pod mikroskopem optycznym i uwidaczniają się dopiero pod mikroskopem skaningowym, Analizując dwie odmiany granitu zauważono, że zdecydowanie większy wzrost spękań występuje w granicie gruboziarnistym. Jakkolwiek rozrost istniejących i powstanie nowych spękań nie są jedynymi zmianami strukturalnymi zauważonymi w podgrzewanych skałach (porównaj rozdział 3.1 i 3.2), to w rezultacie zaprezentowanych wyników badań przyjęto, że są one tym procesem, który wywiera największy wpływ na właściwości fizyczne badanych skał. W badanych nie zaobserwowano przemian fazowych. Zwrócono natomiast uwagę na niewielkie zmiany chemiczne. Ich przykładem może być np. oksydacja skaleni i biotytu, czego efektem jest opisana zmiana barwy biotytu (patrz rys. 5). Badania dylatometryczne, których wynik zaprezentowano na rys 17 pokazały, że względny przyrost wymiarów liniowych próbek skał towarzyszący zmianom temperatury w przyjętym zakresie osiąga 0,085% dla granitu drobno- i 0,11% dla gruboziarnistego. Zakładając, że granity można uważać za skały jednorodne i izotropowe można w tym momencie oszacować, że ich trwała zmiana objętości (dylatancja) będąca wynikiem grzania szokowego wyniesie odpowiednio 0,255% i 0,33%. Są to wartości tego samego rzędu, co pokazane wcześniej (rys. 16) wartości porowatości spękań. Potwierdzeniem przypuszczeń o związku pomiędzy przyjętą procedurą obróbki termicznej skały a powstawaniem w niej spękań są wyniki badań przepuszczalności oraz badań porozymetrycznych pokazane w rozdz. 4.2. Zależności widoczne na rys. 8, 9 i 10 pokazują, że dla badanych granitów wraz ze wzrostem temperatury grzania szokowego następuje wyraźny wzrost przepuszczalności i porowatości. Należy przy tym wziąć pod uwagę, że zarówno badania porozymetryczne jak i badania przepuszczalności dostarczają jedynie informacji na temat spękań otwartych, połączonych ze sobą i z brzegami próbki. Nie dają one natomiast żadnych informacji na temat spękań izolowanych. Analizując wyniki testów jednoosiowego ściskania stwierdzić należy, że dla badanego materiału wraz ze wzrostem temperatury grzania szokowego zaobserwowano spadek wytrzymałości oraz sztywności próbki (rys. 11 i 13) połączony ze wzrostem jej odkształcalności (rys. 12). Przyczyny takiego zachowania badanych próbek granitowych można powiązać z pojawianiem się - w wyniku procedury grzania szokowego - nowych oraz rozrostem istniejących już w próbce mikrospękań. W rozdziale 4.3 zaprezentowano wyniki pomiarów współczynnika Poissona. Dla badanych granitów trudno dopatrzyć regularności w zależności ν(Tg), co może być konsekwencją trudności związanych ze stosowaną techniką pomiaru odkształceń poprzecznych Wydaje się jednak, że anomalia zilustrowana na rys. 14 jest zjawiskiem fizycznym polegającym na tym, że deformacja poprzeczna szkieletu próbki podczas jej jednoosiowego ściskania powoduje zamykanie się w próbce tych spękań, które są odchylone od kierunku siły obciążającej. Reasumując należy stwierdzić, że w pracy wykazano, że wskutek przyjętej procedury ogrzewania i chłodzenia próbek w badanych granitach zachodzą mierzalne zmiany strukturalne pociągające za sobą istotne zmiany wybranych właściwości mechanicznych. W szczególności wykazano, że spośród wielkości charakteryzujących strukturę skały znaczącemu rozrostowi uległa sieć spękań. Konsekwencją tych zmian były znaczące zmiany takich charakteryzujących skałę wielkości fizycznych jak: prędkość podłużnej fali akustycznej (vp), współczynnik przepuszczalności (k), porowatość całkowita (n) i porowatość spękań (η), granica wytrzymałości na ściskanie (Rσ1) i towarzyszące jej odkształcenie (Rε1), moduł Younga (E) i współczynnik Poissona (ν).
Źródło:
Archives of Mining Sciences; 2012, 57, 4; 951-974
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies