Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "image matching" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Automatyczna orientacja obrazów cyfrowych na przykładzie wybranej geometrii sieci zdjęć
Automatic orientation of digital images using the example of selected geometry of a network of images
Autorzy:
Zawieska, D.
Powiązania:
https://bibliotekanauki.pl/articles/131129.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
operatory detekcji narożników
dopasowanie zdjęć
modelowanie 3D
operators of corner detection
image matching
3D modelling
Opis:
Celem niniejszego referatu jest przeanalizowanie działania wybranych algorytmów, które automatycznie obliczą elementy orientacji zewnętrznej sieci zdjęć a następnie wyznaczą współrzędne chmury punktów 3D, opisujących model badanego obiektu. Do obliczeń wykorzystano autorski program, realizujący kolejne etapy tworzenia modelu 3D. Pierwsza faza obejmowała wyróżnienie na poszczególnych zdjęciach elementów charakterystycznych, gdzie wykorzystane zostały operatory detekcji narożników SIFT i SUSAN. Następnym krokiem było połączenie punktów homologicznych na sąsiednich zdjęciach. Sposób realizacji tego kroku jest determinowany przez wybór typu operatora. Operator SIFT posiada dedykowany mechanizm tworzenia par, podczas gdy operator SUSAN wymaga utworzenia odrębnych metod. Do dopasowania punktów wykorzystano metodę Area Base Matching, zmodyfikowaną na potrzeby modelowania 3D. Na podstawie tak zebranych danych, kolejnym etapem jest wyznaczenie współrzędnych 3D chmury punktów mierzonego obiektu. W niniejszym referacie przedstawiono dwa rozwiązania. Jedno z nich realizuje dopasowywanie zdjęć parami, korzystając z macierzy podstawowej a drugie trójkami, wykorzystując rachunek tensorowy. W praktyce, pierwsze rozwiązanie wyznaczające punkty modelu okazało się mniej stabilne numerycznie, co może prowadzić do znacznych błędów w modelu końcowym. Drugie rozwiązanie jest trudniejsze do wykorzystania, gdyż wymaga odnalezienia odpowiadających sobie punktów na co najmniej trzech zdjęciach. Eksperymenty przeprowadzono na wybranych obiektach bliskiego zasięgu, z odpowiednio wykonaną geometrią zdjęć, tworzących pierścień (okrąg) wokół mierzonego obiektu.
The objective of this paper is to analyse operations of selected algorithms, which will automatically compute elements of external orientation of a network of photographs and then, they will determine co-ordinates of a 3D cloud of points, which describe a model of the analysed object. The author’s software tool has been utilised for calculations; it performs successive stages of the 3D model generation: detection of characteristic points, point matching on successive photographs, determination of a tensor, calibration and 3D point cloud generation. A series of experiments have been performed in order to evaluate selection of the optimum solution. The first stage included distinguishing of characteristic elements on particular photographs; corner detection operators, SIFT and SUSAN were applied for that stage. The next step concerned connection of homological points on neighbouring photographs. The method of implementation of that step is determined by selection of the operator type. The SIFT operator has the dedicated mechanism of pair creation, whilst the SUSAN operator requires creation of separate methods. The Area Base Matching method, modified according to the demands of 3D modelling, was used for the needs of point matching. This method investigates correlation of the background within the neighbourhood of characteristic points and uses the results of that investigations to match the photographs. Basing on data collected this way, the next stage aims at determination of 3D co-ordinates of the cloud of points of the measured object. Two solutions have been presented in this paper. One of them allows for matching photographs in pairs, using the fundamental matrix; the second solution allows for threesome matching of photographs, using the tensor calculus. In practice, the first solution, which determines the model points, turned to be less numerically stable, what may lead to considerable errors of the final model. The second solution is more difficult to use, since it requires that corresponding points are found in at least three photographs. Experiments were performed for selected close range objects, with the appropriate specified geometry of photographs, which created a ring around the measured object.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 509-519
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of operators for detection of corners set in automatic image matching
Autorzy:
Zawieska, D.
Powiązania:
https://bibliotekanauki.pl/articles/129929.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
feature detection
corner detection
3D modelling
image matching
funkcja wykrywania
wykrywanie krawędzi
modelowanie 3D
dopasowanie obrazów
Opis:
Reconstruction of three dimensional models of objects from images has been a long lasting research topic in photogrammetry and computer vision. The demand for 3D models is continuously increasing in such fields as cultural heritage, computer graphics, robotics and many others. The number and types of features of a 3D model are highly dependent on the use of the models, and can be very variable in terms of accuracy and time for their creation. In last years, both computer vision and photogrammetric communities have approached the reconstruction problems by using different methods to solve the same tasks, such as camera calibration, orientation, object reconstruction and modelling. The terminology which is used for addressing the particular task in both disciplines is sometimes diverse. On the other hand, the integration of methods and algorithms coming from them can be used to improve both. The image based modelling of an object has been defined as a complete process that starts with image acquisition and ends with an interactive 3D virtual model. The photogrammetric approach to create 3D models involves the followings steps: image pre-processing, camera calibration, orientation of images network, image scanning for point detection, surface measurement and point triangulation, blunder detection and statistical filtering, mesh generation and texturing, visualization and analysis. Currently there is no single software package available that allows for each of those steps to be executed within the same environment. For high accuracy of 3D objects reconstruction operators are required as a preliminary step in the surface measurement process, to find the features that serve as suitable points when matching across multiple images. Operators are the algorithms which detect the features of interest in an image, such as corners, edges or regions. This paper reports on the first phase of research on the generation of high accuracy 3D model measurement and modelling, focusing upon the application of different operators for accurate feature point extraction. The implementation of those operators is discussed and performance of differen operators is analysed. The optimal operator for high accuracy close range object reconstruction is then highlighted. This research has facilitated a development of the feature extraction and image measurement process that will be central to the development of an automatic procedure for high accuracy point cloud generation in multi image networks where robust orientation and 3D point determination will facilitate surface measurement and modelling within a single software system.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2011, 22; 423-436
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatyczna rekonstrukcja modeli 3D małych obiektów bliskiego zasięgu
3D models automatic reconstruction of selected close range objects
Autorzy:
Zawieska, D.
Powiązania:
https://bibliotekanauki.pl/articles/130356.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
SUSAN
automatyczne dopasowanie obrazów
RANSAC
rekonstrukcja powierzchni
modelowanie 3D
wizualizacja
automatic image matching
surface reconstruction
3D modelling
visualization
Opis:
Reconstruction of three-dimensional, realistic models of objects from digital images has been the topic of research in many areas of science for many years. This development is stimulated by new technologies and tools, which appeared recently, such as digital photography, laser scanners, increase in the equipment efficiency and Internet. The objective of this paper is to present results of automatic modeling of selected close range objects, with the use of digital photographs acquired by the Hasselblad H4D50 camera. The author's software tool was utilized for calculations; it performs successive stages of the 3D model creation. The modeling process was presented as the complete process which starts from acquisition of images and which is completed by creation of a photorealistic 3D model in the same software environment. Experiments were performed for selected close range objects, with appropriately arranged image geometry, creating a ring around the measured object. The Area Base Matching (CC/LSM) method, the RANSAC algorithm, with the use of tensor calculus, were utilized form automatic matching of points detected with the SUSAN algorithm. Reconstruction of the surface of model generation is one of the important stages of 3D modeling. Reconstruction of precise surfaces, performed on the basis of a non-organized cloud of points, acquired from automatic processing of digital images, is a difficult task, which has not been finally solved. Creation of poly-angular models, which may meet high requirements concerning modeling and visualization is required in many applications. The polynomial method is usually the best way to precise representation of measurement results, and, at the same time, to achieving the optimum description of the surface. Three algorithm were tested: the volumetric method (VCG), the Poisson method and the Ball pivoting method. Those methods are mostly applied to modeling of uniform grids of points. Results of experiments proved that incorrect utilization of these methods results in various artifacts and deformations of models. After generation of a triangular grid of the modeled surface, results were visualized using the shading methods and texturing of the cloud of points. The accuracy of obtained reconstructions of the model surface equaled bellow 1 mm.
Celem niniejszego artykułu jest prezentacja wyników automatycznego modelowania wybranych obiektów bliskiego zasięgu (głowa manekina, kamień) z wykorzystaniem obrazów cyfrowych z aparatu Hasselblad H4D50. Do obliczeń wykorzystano autorski program, realizujący kolejne etapy tworzenia modelu 3D. Proces modelowania został zaprezentowany jako kompletny proces rozpoczynający się od pozyskania obrazów, który jest ukończony wraz z utworzeniem fotorealistycznego modelu 3D, w tym samym środowisku programowym. Eksperymenty przeprowadzono na wybranych obiektach bliskiego zasięgu, z odpowiednio wykonaną geometrią zdjęć, tworzących pierścień (okrąg) wokół mierzonego obiektu. Do automatycznego dopasowania punktów, wykrytych algorytmem SUSAN, wykorzystano metodę Area Base Matching (CC/LSM), algorytm RANSAC wykorzystując rachunek tensorowy. Rekonstrukcja powierzchni generowania modelu jest jednym z bardzo ważnych etapów modelowania 3D. Rekonstrukcja precyzyjnych powierzchni na podstawie nieregularnej chmury punktów uzyskanych z automatycznego opracowania obrazów cyfrowych jest zagadnieniem otwartym. Tworzenie wielokątnych modeli, które mogą sprostać wysokim wymaganiom w zakresie modelowania i wizualizacji, potrzebne jest w wielu aplikacjach. Metoda wielokątów jest zwykle idealna drogą do dokładnego reprezentowania wyników pomiarów, a jednocześnie do uzyskania optymalnego opisu powierzchni. Przetestowano trzy algorytmy: metodę objętościową (VCG), metodę Poissona i metodę Ball Pivoting. Metody te są najczęściej stosowane do modelowania jednorodnej siatki punktów. Wyniki eksperymentów wykazały, że niewłaściwe zastosowanie tych metod powoduje różne artefakty i zniekształcenia powierzchni modelu. Po utworzeniu siatki trójkątów modelowanej powierzchni, wyniki zwizualizowano wykorzystując metodę cieniowania oraz teksturowanie chmury punktów. Dokładność uzyskanej rekonstrukcji powierzchni modelu uzyskano z poniżej 1 mm.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2013, 25; 295-302
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena dokładności modelu budynku z bardzo gęstej chmury punktów pozyskanej z integracji zdjęć o różnej geometrii
Assessment of accuracy for the building model acquired from a high dense points cloud based on images of different geometry
Autorzy:
Drzewiecki, R.
Bujakiewicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/129593.pdf
Data publikacji:
2018
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
BSP
modelowanie 3D
automatyczne dopasowywanie wieloobrazowe
gęsta chmura punktów
UAV
3D modeling
high density image matching
dense points cloud
Opis:
Dokładność rekonstrukcji 3D modeli budynków jest w znacznym stopniu uzależniona od gęstości chmur punktów jakie są wykorzystywane dla ich tworzenia. Sprzyja temu rozwijająca się w ostatnich latach metoda tworzenia bardzo gęstych chmur punktów w oparciu o automatyczne pomiary na zdjęciach cyfrowych o dużych pokryciach. W niniejszym artykule zostanie przedstawiony przykład rekonstrukcji 3D modelu budynku o skomplikowanym kształcie, z wykorzystaniem gęstej chmury punktów, ze zdjęć niemetrycznych o różnej geometrii. W tym celu, pozyskano 200 zdjęć o pokryciu około 90%, na trzech poziomach wysokości lotu systemu BSP (DJI Phantom4), oraz dodatkowo wykonano 46 zdjęć z podobnym pokryciem, aparatem FUJIFILM X-S1, ze stanowisk naziemnych. Do całego procesu rekonstrukcji obiektu wykorzystano oprogramowanie Agisoft PhotoScan. Ze względu na zróżnicowaną metrykę zdjęć z BSP oraz stanowisk naziemnych, a także ich różny sposób kalibracji (przed lub w trakcie opracowania), zdjęcia obu sieci umieszczono w dwóch klastrach, dla których w niezależnych wyrównaniach aero/terra triangulacji, zostały wyznaczone parametry orientacji zewnętrznej (EOZ), względem tego samego referencyjnego układu współrzędnych. Automatyczny pomiar bardzo dużej liczby punktów opisujących obiekt, na zdjęciach z obu klastrów oraz wykorzystanie wyznaczonej metryki kamer i parametrów EOZ, umożliwiło generowanie jednej wspólnej bardzo gęstej chmury punktów (ponad 6 milionów), z której stworzono finalne produkty, tj. 3D modele obiektu w kilku formach. Ocenę poprawności rekonstrukcji kształtu 3D modelu obiektu wykonano na podstawie porównania odległości miar czołowych budynku pomierzonych w terenie i na modelu, oraz długości pomiędzy punktami specjalnie sygnalizowanymi na obiekcie, a także poprzez analizę średnich błędów kwadratowych określonych dla punktów osnowy. Ostateczna dokładność mieściła się w granicach 0.01 - 0.03m, co potwierdza duży potencjał integracji zdjęć niemetrycznych, pozyskanych dla obiektu z drona i stanowisk naziemnych, oraz tworzenia jednej wspólnej gęstej chmury punktów, w celu wiernej rekonstrukcji kształtu modelu 3D.
Accuracy for reconstruction of 3D models of buildings, depends mainly upon density of point clouds, which are used for their creation. The methods for creation of the very dense points clouds on base of automatic measurement of the multi images have been successfully developed. In this paper, the example for automatic reconstruction of 3D model of building of quite complicated shape with use the dense points cloud from non-metric photographs of different geometry, is presented. For this purpose, using the BSP (DJI Phantom) from three height levels - 200 photographs with overlap of about 90%, were acquired. In addition, 46 photographs from ground stations with the camera (FUJIFILM X-S1),were taken. The entire reconstruction process of 3D model of the building, was executed with Agisoft PhotoScan programe. Because of different cameras specification for photographs taken from BSP and from ground stations and various approaches for cameras calibration, the two groups of photographs were located in two classes (clasters), for which the exterior orientation parameters (EO) were separately determined by aero and /terra triangulation, referenced to the same ground coordinate system. The automatic measurement of very large number of image object points on all photographs and the use of their interior and exterior orientation parameters, have enabled to generate one common very dense points cloud (about 6 millions), which was used to produce the final 3D building model in a few forms. The accuracy of reconstruction of the building model shape was estimated on base of comparison of the model and real data (measures on the building) and also the RSE for the control and check points. The overall accuracy of 0.01 – 0.03 meters was obtained, which have confirmed the high potentiality for integration of different geometry non-metric photographs for the reconstruction of good quality 3D model.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2018, 30; 83-93
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies