Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sztuczne Sieci Neuronowe" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Sztuczne sieci neuronowe w modelowaniu procesów z ograniczonym zbiorem danych w inżynierii rolniczej
Neural networks in modeling agricultural engineering processes with limited date file
Autorzy:
Trajer, J.
Powiązania:
https://bibliotekanauki.pl/articles/286483.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczne sieci neuronowe
modelowanie
inżynieria rolnicza
artificial neural network
modeling
agricultural engineering
Opis:
Celem pracy jest przedstawienie metody neuronowego modelowania procesów z ograniczonym zbiorem danych. W przykładzie wykorzystano bazę danych zmian cen przechowywanej marchwi. Podano koncepcję budowy modelu neuronowego, który pomimo ograniczonego zbioru danych posiadać może zadowalające własności uogólniające, w sensie rozszerzenia zasięgu jego stosowalności poza zbiór uczący.
In this paper the analysis of the neural modeling of the agricultural engineering process was presented. The problems of effectiveness and quality neural networks in these processes was discussed.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 173-180
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling of fuel consumption using artificial neural networks
Modelowanie zużycia paliwa przy pomocy sztucznych sieci neuronowych
Autorzy:
Witaszek, Kazimierz
Powiązania:
https://bibliotekanauki.pl/articles/329548.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
fuel consumption
modeling
artificial neural network
SNNS
OBDII data
zużycie paliwa
modelowanie
sztuczne sieci neuronowe
dane OBDII
Opis:
The article presents a model of operational fuel consumption by a passenger car from the B segment, powered by a spark ignition engine. The model was developed using artificial neural networks simulated in the Stuttgart Neural Network Simulator (SNNS) package. The data for the model was obtained from longterm operational tests, during which data from the engine control unit were recorded via the OBDII diagnostic interface. The model is based on neural networks with two hidden layers, the size of which was selected using an original iterative algorithm. During the structure selection process, a total of 576 different networks were tested. The analysis of the obtained test errors made it possible to select the optimal structure of the 6-19-17-1 model. The network input values were: vehicle speed and acceleration, road slope, throttle opening degree, selected gear number and engine speed. The networks were trained using the efficient RPROP method. A correctly trained network, based on the set parameters, was able to forecast the instantaneous fuel consumption. These forecasts showed a high correlation with the measured values. Average fuel consumption calculated on their basis was close to the real value, which was calculated on the basis of two consecutive fuelings of the vehicle.
W artykule przedstawiono model eksploatacyjnego zużycia paliwa przez samochód osobowy z segmentu B, zasilany silnikiem o zapłonie iskrowym. Model opracowano przy wykorzystaniu sztucznych sieci neuronowych, których działanie symulowano w pakiecie Stuttgart Neural Network Simulator (SNNS). Dane do modelu pozyskano z długotrwałych badań eksploatacyjnych, podczas których rejestrowano przez interfejs diagnostyczny OBDII dane pochodzące z jednostki sterującej silnikiem. Model oparto na sieciach neuronowych o dwu warstwach ukrytych, których wielkość dobrano przy pomocy autorskiego, iteracyjnego algorytmu. Podczas procesu doboru struktury przebadano łącznie 576 różnych sieci. Analiza uzyskanych błędów testowania pozwoliła na wybór optymalnej struktury modelu 6-19-17-1. Wielkościami wejściowymi sieci były: prędkość i przyspieszenie pojazdu, nachylenie drogi, stopień otwarcia przepustnicy, numer wybranego biegu oraz prędkość obrotowa silnika. Sieci uczono przy użyciu wydajnej metody RPROP. Poprawnie nauczona sieć na podstawie zadanych parametrów była w stanie prognozować chwilowe zużycie paliwa. Prognozy te wykazywały wysoką korelację ze zmierzonymi wartościami. Obliczone na ich podstawie średnie zużycie paliwa było zbliżone do rzeczywistej wartości, którą obliczono na podstawie dwu kolejnych tankowań pojazdu.
Źródło:
Diagnostyka; 2020, 21, 4; 103-113
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wear of Railway Tyre Steels Modelling Using Artificial Neural Networks
Modelowanie zużycia stali na obręcze kół kolejowych za pomocą sztucznych sieci neuronowych
Autorzy:
Witaszek, Mirosław
Witaszek, Kazimierz
Powiązania:
https://bibliotekanauki.pl/articles/1857830.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
wear
tyre steels
artificial neural networks
modelling
zużycie
stale na obręcze kół kolejowych
sztuczne sieci neuronowe
modelowanie
Opis:
In the paper the results of sliding wear tests were used to model the dependence of steel volume loss on railway wheel tyres on selected material parameters and sliding conditions. The material properties included in this modelling were the hardness and chemical composition of the tyre material (specimens) and the hardness of the mating material (counter-specimens). The conditions for sliding were the initial maximum Hertzian pressure and the sliding distance. The tests were carried out in the ring-block system. Artificial neural networks were used for modelling. It was found that the constructed model made it possible to quantify the volume loss from the above–mentioned factors. A clear influence of the pressure, friction distance, and hardness of both cooperating materials on the studied wear was found. The influence of the chemical composition is less noticeable due to the rather narrow range of its allowable changes. The microscopic tests allowed us to identify the main wear mechanisms in the sliding friction of the tested tyre and rail steels.
W pracy przedstawiono wykorzystanie wyników badań zużycia przy tarciu ślizgowym do modelowania zależności zużycia objętościowego stali na obręcze kół kolejowych od wybranych parametrów materiału i warunków współpracy. Własnościami materiału uwzględnionymi w tym modelowaniu były twardość oraz skład chemiczny materiału obręczy (próbki) oraz twardość materiału współpracującego (przeciwpróbki). Warunkami współpracy były początkowy, maksymalny nacisk Hertza i droga tarcia. Badania przeprowadzono w układzie klocek–krążek. Do modelowania wykorzystano sztuczne sieci neuronowe. Stwierdzono, że zbudowany model pozwolił na określenie zależności ilościowych ubytku objętościowego od wyżej wymienionych czynników. Wskazano występowanie wyraźnego wpływ nacisku, drogi tarcia, twardości obu współpracujących materiałów na badane zużycie. Wpływ składu chemicznego jest mniej zauważalny z powodu dość wąskiego zakresu dopuszczalnych jego zmian. Badania mikroskopowe pozwoliły na zidentyfikowanie głównych mechanizmów zużywania przy tarciu ślizgowym badanych stali obręczowych i szynowej.
Źródło:
Tribologia; 2020, 294, 6; 77-85
0208-7774
Pojawia się w:
Tribologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Artificial Neural Networks to Predict the Air Permeability of Woven Fabrics
Zastosowanie sztucznych sieci neuronowych do przewidywania przepuszczalność powietrza tkanin
Autorzy:
Matusiak, M.
Powiązania:
https://bibliotekanauki.pl/articles/233122.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
woven fabrics
air permeability
artificial neural networks
modelling
tkaniny
przepuszczalność powietrza
sztuczne sieci neuronowe
modelowanie
przepływ powietrza
Opis:
Air permeability is one of the most important utility properties of textile materials as it influences air flow through textile material. Air permeability plays a significant role in textiles for clothing due to their influence on physiological comfort. Air permeability is also very important in technical textiles, especially for filtration, automotive airbags, parachutes, etc. The air permeability of textile materials depends on their porosity. There are a lot of structural properties of textile materials influencing air permeability and there are also statistically significant interactions between the main factors influencing the air permeability of fabrics. It justifies the application of artificial neural networks (ANNs) to predict the air permeability of textile materials on the basis of their structural parameters. Within the framework of the work presented ANNs were applied to predict the air permeability of cotton woven fabrics.
Przepuszczalność powietrza jest jedną z ważniejszych właściwości użytkowych materiałach włókienniczych. Wpływa ona na przepływ powietrza przez materiał włókienniczy. Przepuszczalność powietrza odgrywa istotną rolę w materiałach włókienniczych przeznaczonych na odzież z uwagi na ich wpływ na odczuwanie komfortu fizjologicznego. Przepuszczalność powietrza jest także bardzo ważna w przypadku tekstyliów technicznych, w szczególności przeznaczonych na filtry, spadochrony,poduszki powietrzne itp. Przepuszczalność powietrza materiałów włókienniczych zależy od ich porowatości. Istnieje wiele właściwości strukturalnychmateriałów włókienniczych wpływających na przepuszczalność powietrza. Występują również statystycznie istotne interakcje pomiędzy głównymi czynnikami wpływającymi na przepuszczalność powietrza tkanin. To uzasadnia zastosowanie sztucznych sieci neuronowych do przewidywania przepuszczalności powietrza materiałów włókienniczych na podstawie ich parametrów strukturalnych. W ramach niniejszej pracy sztuczne sieci neuronowe zostały zastosowane do przewidywania przepuszczalności powietrza tkanin bawełnianych.
Źródło:
Fibres & Textiles in Eastern Europe; 2015, 1 (109); 41-48
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of Artificial Neural Networks for Modelling of Seam Strength and Elongation at Break
Zastosowanie sztucznych sieci neuronowych dla modelowania wytrzymałości szwów i wydłużenia przy zerwaniu
Autorzy:
Yildiz, Z.
Dal, V.
Ünal, M.
Yildiz, K.
Powiązania:
https://bibliotekanauki.pl/articles/232292.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
textile fabrics
artificial neural networks
seam strength
modeling
tekstylia
sztuczne sieci neuronowe
szew wytrzymałościowy
modelowanie
wydłużenia przy zerwaniu
Opis:
The strength and elongation at break of a seam are very important characteristics of comfort clothing. Optimum seam strength must be durable enough to do our daily activities easily. Some parameters such as the type and count of the sewing yarn, the seam density, the size of the sewing needle, and type of stitch affecting the strength and elongation at break of the seam. In this study two kinds of fabrics (gabardine and poplin) were chosen for experiments. As sewing parameters, two different types of stitches (plain and chain stitch), five seam densities (3, 4, 5, 6 and 7 seams/cm), two kinds of sewing needles (SPI and SES), and three kinds of sewing yarns (cotton, core-spun, and PBT yarns) were used in experiments. With these materials 120 different seam variations were developed. Each sampless seam strength was tested according to the ISO 13935-1[1] standard using an Instron 4411 instrument. After the testing process, an artificial neural network model was developed to predict the seam strength and elongation at break values. The test results were applied to multi layer perceptron and radial basis function neural network modeling. These two neural network types were compared in terms of the accuracy of the modeling system. The results show that the artificial neural network model produces reliable estimates of seam strength and elongation at break (R=1, MSE=3.33E-05).
Wytrzymałość szwu i wydłużenie przy zerwaniu są bardzo ważnymi cechami ubrań z punktu widzenia wygody noszenia. Optymalna wytrzymałość szwu musi być wystarczająco duża, aby z łatwością wykonywać nasze codzienne czynności. Niektóre z parametrów, takich jak typ oraz numer przędzy, gęstość szwu, rozmiar igły do szycia, typ ściegu wpływają na wytrzymałość szwu i wydłużenie przy zerwaniu. Badania przeprowadzono na dwóch rodzajach tkanin (gabardyna i popelina), stosując dwa różne rodzaje szwów (proste i łańcuszkowy), szwy o pięciu gęstościach (3, 4, 5, 6 i 7 szwy/cm), dwa rodzaje igieł (SPI i SES) i trzy rodzaje przędz (bawełniana zwykła, rdzeniowa i przędze PBT), otrzymując 120 wariantów szwów. Wytrzymałość każdej próbki została zbadana zgodnie z normą ISO 13935-1 za pomocą przyrządu Instron 4411. Następnie, opracowano model sztucznej sieci neuronowej w celu przewidzenia wartości wytrzymałości szwów i wydłużenia przy zerwaniu. Wyniki badań zostały przetworzone w wielowarstwowym perceptronie i funkcji radialnej modelowania sieci neuronowej. Obydwa typy sieci neuronowych zostały porównane pod względem dokładności modelowania. stwierdzono, że za pomocą modelu sztucznych sieci neuronowych można uzyskać wiarygodne wyniki (R = 1, MSE = 3.33E-05).
Źródło:
Fibres & Textiles in Eastern Europe; 2013, 5 (101); 117-123
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sterowania dawką koagulantu w czasie rzeczywistym w celu zwiększenia skuteczności procesu koagulacji
Use of real time coagulant dose control to upgrade the efficiency of the coagulation process
Autorzy:
Kłos, M.
Gumińska, J.
Powiązania:
https://bibliotekanauki.pl/articles/237145.pdf
Data publikacji:
2011
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
koagulacja
sterowanie dawką koagulantu
jakość wody
sztuczne sieci neuronowe
modelowanie
coagulation
coagulant dose control
water quality
artificial neural networks
modeling
Opis:
Zagadnienie sterowania dawką koagulantu w procesie oczyszczania wód powierzchniowych nie jest jeszcze zagadnieniem w pełni rozwiązanym. Stosowane w praktyce wodociągowej rozwiązania techniczne opierają się głównie na określeniu korelacji między wybranymi wskaźnikami jakości ujmowanej wody, np. mętnością, potencjałem elektrokinetycznym (analiza prądu strumieniowego) i ich wykorzystaniem w prostych układach automatyki. W artykule przedstawiono wyniki badań nad założeniami pracy układu oczyszczania wody działającego zgodnie z proponowanymi algorytmami sterującymi dawkowaniem koagulantu. Badania przeprowadzono w zakładzie oczyszczania wody powierzchniowej w rejonie pogórskim, w którym wody charakteryzują się dużą zmiennością jakości. Analiza wyników badań, wykorzystująca zarówno klasyczne modele matematyczne, jak i sztuczne sieci neuronowe, dała podstawy systemu sterowania dawką koagulantu, pozwalającego na rozszerzenie funkcjonalności układu wykorzystującego standardowy analizator prądu strumieniowego.
There are no simple solutions to the problem of coagulant dose control in the process of surface water treatment. Those currently being used in engineering are generally focused on determining the correlation between some of the parameters that describe the quality of raw water, e.g. turbidity or the electrokinetic potential (streaming current analysis), and on implementing them in simple automatics. This paper describes the results of investigations that underlie the assumptions for the water treatment train, and based on these data proposes an algorithm for coagulant dose control. Pertinent studies were conducted at a surface water treatment plant located in a foot-hill area. The water entering the treatment plant is highly variable in quality. Analysis of the test results (where use was made of both classical mathematical models and artificial neural networks) enabled formulation of the principles for the system of coagulant dose control, which consequently upgraded the functionality of the system involving a standard stream current analyzer. słowa kluczowe polskie: Koagulacja, sterowanie dawką koagulantu, jakość wody, sztuczne sieci neuronowe, modelowanie.
Źródło:
Ochrona Środowiska; 2011, 33, 4; 71-76
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja symulatora nawigacyjnego planowania podróży z wykorzystaniem modelu neuronowego układu napędu statku
The concept of a navigational travel planning simulator using the neural model of the propulsion system of the ship
Autorzy:
Rudzki, K.
Powiązania:
https://bibliotekanauki.pl/articles/344237.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Morski w Gdyni. Wydawnictwo Uniwersytetu Morskiego w Gdyni
Tematy:
modelowanie
sztuczne sieci neuronowe
układ napędu statku
symulator
nawigacyjne planowanie podróży
modeling
artificial neural networks
ship propulsion system
simulator
navigational travel planning
Opis:
W artykule przedstawiono koncepcję symulatora nawigacyjnego planowania podróży, zbudowanego na bazie programu nawigacyjnego OpenCPN. Poprzez dodatkowy plug-in możliwości programu zostaną rozszerzone o moduł do planowania i symulacji trasy żeglugi z uwzględnieniem warunków meteorologicznych panujących na akwenie. Pozycja statku na potrzeby symulacji trasy będzie wyznaczana na podstawie przyjętego kursu zgodnie z zaplanowaną trasą oraz prędkości wyliczanej przez sztuczną sieć neuronową z uwzględnieniem warunków meteorologicznych.
The article presents the concept of a navigation simulator for travel planning based on the OpenCPN navigation program. Through an additional plug-in the program capabilities will be extended with a module for planning and simulating shipping routes taking into account meteorological conditions on the basin. The position of the ship for the simulation of the route will be determined on the basis of the accepted course of the ship, according to the planned route and velocity calculated by the artificial neural network, taking into account the forecasted meteorological conditions.
Źródło:
Prace Wydziału Nawigacyjnego Akademii Morskiej w Gdyni; 2017, 32; 84-90
1730-1114
Pojawia się w:
Prace Wydziału Nawigacyjnego Akademii Morskiej w Gdyni
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Budowa neuronowych modeli prognostycznych na przykladzie wybranych zagadnien inzynierii rolniczej
Construction of neural forecasting models for example of selected issues in agricultural engineering
Autorzy:
Dejewska, T
Boniecki, P.
Jakubek, A.
Powiązania:
https://bibliotekanauki.pl/articles/883707.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
zbiory danych
modelowanie
modele prognostyczne
inzynieria rolnicza
sieci neuronowe sztuczne
uczenie sie
Opis:
Celem pracy było omówienie metodyki budowy modeli prognostycznych w oparciu o sztuczne sieci neuronowe. Podczas konstruowania modelu neuronowego realizującego predykcję występują często złożone problemy. Z uwagi na to przybliżono metody pozwalające na poprawny przebieg poszczególnych etapów budowy. Przedstawiono również wartość poznawczą i skuteczność działania tych modeli dla inżynierii rolniczej.
The aim of the following thesis was the description of methods of building of prognostic models with the use of the artificial neural networks. During constructing of neuronal model of prediction, a variety of complex problems may often appear. In consideration of those problems, some methods enabling appropriate course of each of the stages of building the model were presented. Moreover, a cognitive value and effectiveness of working of those models in the agricultural engineering were introduced.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2009, 05; 7-10
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do prognozowania zawartości azotu ogólnego w odpływie z oczyszczalni ścieków
Application of artificial neural networks to forecasting total nitrogen content in secondary effluent from treatment plants
Autorzy:
Wąsik, E.
Chmielowski, K.
Studziński, J.
Szeląg, B.
Powiązania:
https://bibliotekanauki.pl/articles/237416.pdf
Data publikacji:
2018
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
ścieki komunalne
ścieki oczyszczone
modelowanie
prognozowanie
sztuczne sieci neuronowe
azot ogólny
azot amonowy
azotyny
azotany
azot organiczny
sewage
secondary effluent
modeling
forecasting
artificial neural networks
total nitrogen
ammonia nitrogen
nitrites
nitrates
organic nitrogen
Opis:
Zaprezentowano możliwość wykorzystania sztucznych sieci neuronowych do prognozowania zawartości azotu ogólnego w ściekach oczyszczonych w funkcji jego różnych postaci występujących w odpływie z oczyszczalni ścieków. W badaniach zastosowano dane z lat 2010–2016, zawierające pomiary zawartości związków azotu w ściekach odpływających z oczyszczalni obsługującej aglomerację o równoważnej liczbie mieszkańców powyżej 100000. Zbiór danych wejściowych został wstępnie poddany analizie skupień i następnie wykorzystany do trenowania sieci neuronowej w postaci perceptronu wielowarstwowego. Na podstawie uzyskanych symulacji stwierdzono, że najmniejsze wartości błędów prognozy ilosci azotu ogólnego (2÷3%) uzyskano w wariancie, gdy jego wartość była funkcją wszystkich postaci azotu występujących w oczyszczonych ściekach. W przypadku modelu wykorzystującego jedynie dane o zawartości azotu nieorganicznego oraz azotanów otrzymane wyniki symulacji niewiele różniły się od wartości rzeczywistych, na co wskazuje bardzo duża wartość współczynnika korelacji (>97%). Wartość średniego błędu bezwzględnego w tym przypadku zwiększyła się tylko o około 4 punkty procentowe do wartości 6,2% (proces uczenia) oraz 6,9% (proces testowania/walidacji) w stosunku do symulacji wykorzystującej wszystkie postacie azotu w ściekach.
Potential application of artifi cial neural networks (ANN) to forecast total nitrogen content (TNC) in treated wastewater was presented as a function of selected nitrogen forms present in the secondary effl uent. The analyzed data from the period of 2010–2016 covered measurements of the nitrogen content in the effl uent from the treatment plant servicing agglomeration with a population equivalent of more than 100,000. The input data set was initially subjected to cluster analysis and then, used to train a neural network in the form of a multilayer perceptron (MLP). The simulations demonstrated that the smallest error values for the forecast of TNC (2–3%) were obtained for the variant, the value of which was a function of all the forms of nitrogen present in the secondary effl uent. For the total nitrogen model based on inorganic nitrogen and nitrates data only, the simulation results did not differ signifi cantly from the actual values, as indicated by a very high correlation coeffi cient (over 97%). In this case, the value of the mean absolute error increased only by nearly 4% to 6.2% (learning process) or 6.9% (testing/validation process), compared to the simulation based on all the nitrogen forms in the sewage.
Źródło:
Ochrona Środowiska; 2018, 40, 1; 29-33
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies