Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Time series models" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Review of the book ,,The analysis and forecasting of time series. Practical introduction on the basis of the R environment by: A. Zagdanski and A. Suchwałko
Autorzy:
Burnecki, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/747794.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
time series models
forecasting
data analysis
modele szeregów czasowych
prognozowanie
analiza danych
Opis:
Niniejsza książka stanowi praktyczne wprowadzenie do modelowania w środowisku R różnorodnych danych zbieranych w regularnych odstępach czasu. Książka adresowana jest do wszystkich zainteresowanych modelami szeregów czasowych a szczególnie do studentów i absolwentów kierunków ścisłych, ekonomicznych oraz technicznych.
This book provides a practical introduction to the R environment variety of modeling data collected at regular intervals. The book is addressed to anyone interested in time series models, and mainly to students and graduates of scientific, economic and technical faculties. 
Źródło:
Mathematica Applicanda; 2016, 44, 2
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting the seasonality of passengers in railway transport based on time series for proper railway development
Autorzy:
Borucka, Anna
Guzanek, Patrycja
Powiązania:
https://bibliotekanauki.pl/articles/2098132.pdf
Data publikacji:
2021
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
rail transport
passenger flow
time series models
transport kolejowy
przepływ pasażerów
modele szeregów czasowych
Opis:
Planning the frequency of rail services is closely related to forecasting the number of passengers and is part of the comprehensive analysis of railway systems. Most of the research presented in the literature focuses only on selected areas of this system (e.g. urban agglomerations, urban underground transport, transfer nodes), without presenting a comprehensive evaluation that would provide full knowledge and diagnostics of this mode of transport (i.e. railway transport). Therefore, this article presents methods for modelling passenger flow in rail traffic at a national level (using the example of Poland). Time series models were used to forecast the number of passengers in rail transport. The error, trend, and seasonality (ETS) exponential smoothing model and the model belonging to the ARMA class were used. An adequate model was selected, allowing future values to be forecast. The autoregressive integrated moving average (ARIMA) model follows the tested series better than the ETS model and is characterised by the lowest values of forecast errors in relation to the test set. The forecast based on the ARIMA model is characterised by a better detection of the trends and seasonality of the series. The results of the present study are considered to form the basis for solving potential rail traffic problems, which depend on the volume of passenger traffic, at the central level. The methods presented can also be implemented in other systems with similar characteristics, which affects the usability of the presented solutions.
Źródło:
Transport Problems; 2021, 16, 1; 51--61
1896-0596
2300-861X
Pojawia się w:
Transport Problems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie dokładności różnych metod predykcji stężeń zanieczyszczeń powietrza
A comparison of accuracies of different air pollutants concentration prediction methods
Autorzy:
Hoffman, S.
Jasiński, R.
Powiązania:
https://bibliotekanauki.pl/articles/297662.pdf
Data publikacji:
2009
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
zanieczyszczenia powietrza
monitoring powietrza
stężenia chwilowe
dane monitoringu
brakujące dane
luki pomiarowe
aproksymacja
modele szeregów czasowych
modele regresyjne
sieci neuronowe
air monitoring
hourly concentrations
monitoring data
air pollution
missing data
measure gaps
approximation
time series models
regression models
neural networks
Opis:
W analizie wykorzystano dane zarejestrowane w latach 2004-2008 na ośmiu stacjach monitoringu powietrza działających w różnych miejscowościach województw łódzkiego i mazowieckiego. W pracy badano możliwości aproksymacji stężeń zanieczyszczeń mierzonych na stacjach monitoringu powietrza. Ocenę jakości modelowania wykonano poprzez porównanie modelowanych stężeń ze stężeniami rzeczywistymi. Do predykcji stężeń wykorzystano sieci neuronowe. Porównywano dokładność pięciu różnych grup modeli: modeli szeregów czasowych, liniowych modeli regresji wielowymiarowej, nieliniowych modeli regresji wielowymiarowej, liniowych modeli regresji wielowymiarowej eksplorujących dane pochodzące z sąsiednich stacji monitoringu i nieliniowych modeli regresji wielowymiarowej eksplorujących dane pochodzące z sąsiednich stacji monitoringu. Celem praktycznym była rekomendacja optymalnych technik modelowania luki pomiarowej obejmującej pewien dłuższy fragment serii czasowej tylko jednego z zanieczyszczeń powietrza przy założeniu, że są dostępne wszystkie pozostałe dane, w tym dane pochodzące z sąsiednich stacji monitoringu powietrza. Wykonana analiza wykazała, że dla każdego z zanieczyszczeń powietrza należy rekomendować inne metody predykcji, ponieważ występują duże różnice w możliwościach modelowania poszczególnych zanieczyszczeń powietrza. Stężenia takich zanieczyszczeń, jak O3, SO2, PM10 można efektywnie modelować metodą szeregów czasowych, ale tylko do pewnego horyzontu prognozy, po którym regresyjne metody modelowania okazują się dokładniejsze. W modelowaniu stężeń O3 i PM10 efektywne może się okazać wykorzystanie stężeń tych zanieczyszczeń zarejestrowanych na innych stacjach monitoringu powietrza. W przypadku pozostałych zanieczyszczeń NO, NO2 i CO zasadne jest stosowanie tylko jednej metody modelowania - analizy regresji. Liniowe modele regresyjne są mniej dokładne od ich nieliniowych odpowiedników. Różnice dokładności obu typów modeli nie zawsze są duże. Dlatego modele liniowe mogą stanowić praktyczną alternatywę dla nieliniowych odpowiedników.
Air monitoring data collected over a 5-year period at 8 different measure sites in Central Poland were used as the database for analysis purposes. Approximation of concentrations of monitored air pollutants were done by means of several prediction methods: time series analysis, regression analysis with predictors from a single monitoring station, and regression analysis with external predictors. Separate models were created for O3, NO2, NO, PM10, SO2, CO. Modelled and measured concentrations were compared. As a result prediction errors were calculated for each model. The main objective of analysis was a comparison of prediction results, and recommendation the most accurate modelling methods, dedicated to specified pollutants. The examination was made by means of artificial neural networks, which were employed to create all types of models.
Źródło:
Inżynieria i Ochrona Środowiska; 2009, 12, 4; 307-325
1505-3695
2391-7253
Pojawia się w:
Inżynieria i Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies