- Tytuł:
- Singular elliptic problems with Dirichlet or mixed Dirichlet-Neumann non-homogeneous boundary conditions
- Autorzy:
- Godoy, Tomas
- Powiązania:
- https://bibliotekanauki.pl/articles/29519241.pdf
- Data publikacji:
- 2023
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
singular elliptic problems
mixed boundary conditions
weak solutions - Opis:
- Let Ω be a $ C^2 $ bounded domain in $ R^n $ such that $ ∂Ω = Γ_1 ∪ Γ_2 $, where $ Γ_1 $ and $ Γ_2 $ are disjoint closed subsets of ∂Ω, and consider the problem −Δu = g(·, u) in Ω, u = τ on $ Γ_1 $, $ \frac{∂u}{ ∂ν} = η $ on $ Γ_2 $, where $ 0 ≤ τ ∈ W^{\frac{1}{2} ,2 } (Γ_1),$ $ η ∈ (H_{0, Γ_1}^1 (Ω))^′ $, and $ g : Ω×(0,∞) → \mathbb{R} $ is a nonnegative Carathéodory function. Under suitable assumptions on g and η we prove the existence and uniqueness of a positive weak solution of this problem. Our assumptions allow g to be singular at s = 0 and also at $ x ∈ S $ for some suitable subsets S ⊂ Ω. The Dirichlet problem −Δu = g(·, u) in Ω, u = σ on ∂Ω is also studied in the case when $ 0 ≤ σ ∈ W^{\frac{1}{2} ,2} (Ω) $.
- Źródło:
-
Opuscula Mathematica; 2023, 43, 1; 19-46
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki