Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jóźwik, Jerzy." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
2D Geometric Surface Structure ANN Modeling after Milling of the AZ91D Magnesium Alloy
Autorzy:
Kulisz, Monika
Zagórski, Ireneusz
Józwik, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/2172344.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
magnesium alloys
milling
roughness
artificial neural networks
simulations
Opis:
The paper presents the results of modeling 2D surface roughness parameters in milling by means of an artificial neural network (ANN). The AZ91D magnesium alloy was used. A HSS milling cutter was employed in the research. The main aim of the study was to obtain the lowest possible surface roughness (good quality) using a commonly available HSS cutter. The results of the research work were presented in the form of bar charts, surface charts and graphs depicting the quality of artificial neural networks. The conducted research shows that it is possible to carry out the machining processes that enable obtaining an average surface quality (defined by roughness parameters Ra, Rz, RSm, Rsk). The Ra, Rz, RSm parameters increase along with the machining parameters (fz, ap), as expected. The Rsk parameter takes (in most cases) negative values, which may indicate a surface with more intense friction and indicative of flat-topped distribution. On the other hand, the results of modeling the selected parameters – Ra, Rz, RSm – with the use of artificial neural networks allow concluding that the obtained network models show satisfactory predictive ability (R = 0.99), and thus are an appropriate tool for the prediction of surface roughness parameters.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 2; 131--140
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cutting Forces and 3D Surface Analysis of CFRP Milling
Autorzy:
Biruk-Urban, Katarzyna
Józwik, Jerzy
Bere, Paul
Powiązania:
https://bibliotekanauki.pl/articles/2172348.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
milling
cutting force
CFRP
Opis:
Due to the wide application of Carbon Fiber Reinforced Polymer (CFRP) composites in various industries, more and more attention is paid to machining these materials. One of the most popular way of machining composites is the milling. Milling of composite materials (CM) is a difficult technology due to their anisotropic and heterogeneous structure and the fact that the reinforcing fibers have an intense abrasive effect on the tool edge during machining. The appropriate selection of technological cutting parameters as well as the type and geometry of the tool can significantly affect the value of cutting forces during milling and the quality of the surface after machining. The aim of the paper is to assess the influence of used tools (differing in the number of cutting edges) and various technological parameters of surface milling of CFRP composites on the cutting forces occurring during machining and on the surface quality after machining. Cutting forces were measured during the milling process on a special stand produced by Kistler and the roughness measurements and surface structure were analyzed using the Alicona InfiniteFocusG5 3D optical microscope. On the basis of performed research it was found that 14 edge tool gives lower values of Fx and Fy components of the cutting forces comparing to 2 edge tool, which is especially noticeable at higher cutting speed values vc=160 m/min, where the values of Fx and Fy components decreased by about 43% at fz=0.0030 mm/tooth. This tool gives also lower values of the Sa roughness parameter 1.65 µm.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 2; 206--215
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies