Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Silicon carbide" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Manufacturing and Wear Properties of SiC Coating Layer on Zr alloy Fabricated by Vacuum Kinetic Spray Process
Autorzy:
Ham, Gi-Su
Kim, Kyu-Sik
Lee, Kee-Ahn
Powiązania:
https://bibliotekanauki.pl/articles/356701.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
vacuum kinetic spray
silicon carbide
microstructure
wear
Opis:
This study manufactured a SiC coating layer using the vacuum kinetic spray process and investigated its microstructure and wear properties. SiC powder feedstock with a angular shape and average particle size of 37.4 μm was used to manufacture an SiC coating layer at room temperature in two different process conditions (with different degrees of vacuum). The thickness of the manufactured coating layers were approximately 82.4 μm and 129.4 μm, forming a very thick coating layers. The SiC coating layers consisted of α-SiC and β-SiC phases, which are identical to the feedstock. Cross-sectional observation confirmed that the SiC coating layer formed a dense structure. In order to investigate the wear properties, ball crater tests were performed. The wear test results confirmed that the SiC coating layer with the best wear resistance achieved approximately 4.16 times greater wear resistance compared to the Zr alloy. This study observed the wear surface of the vacuum kinetic sprayed SiC coating layer and identified its wear mechanism. In addition, the potential applications of the SiC coating layer manufactured using the new process were also discussed.
Źródło:
Archives of Metallurgy and Materials; 2019, 64, 2; 519-523
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Volume Percentage of Reinforcement on the Microstructure and Mechanical Properties of an Al6061-T6/SiC Surface Composite Fabricated Through Friction Stir Processing
Autorzy:
Ansari, Abdul Jabbar
Anas, Mohd
Powiązania:
https://bibliotekanauki.pl/articles/2201914.pdf
Data publikacji:
2023
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
friction stir processing
AMMCs
aluminium metal matrix composite
silicon carbide
microstructure
surface composites
composite material
Opis:
In this research, aluminium metal matrix composites (AMMCs) have been manufactured through friction stir processing (FSP) by reinforcing nano-sized SiC particles in an Al6061-T6 alloy. The consequences of the volume percentage of reinforced SiC particles on mechanical properties and microstructural features were analyzed for the developed AMMCs. Microstructural evaluation of a cross-section of a friction stir processed (FSPed) sample has been conducted through Electron backscatter diffraction (EBSD) Energy dispersive spectroscopy (EDS) and a scanning electron microscope (SEM) technique. Microhardness tests were conducted athwart the cross section of FSPed specimen to obtain microhardness feature. A tensile test of FSPed samples has been conducted on a universal testing machine (UTM). Homogeneous distributions of SiC particles were found in the stir zone without any consolidation of particles. The size of the reinforcement particles was decreased slightly by increasing the volume fraction. It has been found that increasing the volume fraction of SiC particles, enhance the tensile strength and microhardness, but decreases the ductility of the aluminium. The maximum ultimate tensile strength (UTS) and microhardness were obtained as 390 MPa and 150.71 HV, respectively, at 12% volume percentage of reinforcement particles. UTS and microhardness of the FSPed Al/SiC have been improved by 38.29% and 59.48% respectively as compared to Al6061-T6. The brittle nature of the FSPed Al/SiC has increased due to a rise in the volume fraction of nanosized SiC particles, which causes a decrease in ductility.
Źródło:
Advances in Science and Technology. Research Journal; 2023, 17, 2; 247--257
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of the modification by ultrafine silicon carbide powder on the structure and properties of the Al-Si alloy
Autorzy:
Kovbasiuk, T. M.
Selivorstov, V. Yu.
Dotsenko, Yu. V.
Duriagina, Z. A.
Kulyk, V. V.
Kasai, O. M.
Voitovych, V. V.
Powiązania:
https://bibliotekanauki.pl/articles/1818500.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
Al-Si alloy
silicon carbide
modification
mechanical properties
microstructure
microhardness
Stop Al-Si
węglik krzemu
modyfikacja
właściwości mechaniczne
mikrostruktura
mikrotwardość
Opis:
Purpose: Determine the possibility of modifying aluminium alloys of the Al-Si system with an ultrafine SiC modifier with a particie size of 3-5 pm. Design/methodology/approach: Processing of the Al-Si alloy was carried out by introducing an ultrafine modifier in the amount of 0.1, 0.2, or 0.3 wt.%. Silicon carbide (SiC) with a particle size in the range of 3-5 pm was used as a modifier. To study the microstructure of the formed surface layers, a metallographic analysis was performed according to the standard method on a microscope MIKPOTEX® MMT-14C using TopView software. Microhardness studies of the samples were carried out on a Vickers microhardness tester NOVOTEST TC-MKV1. The microstructure of castings of the AlSi12 grade was studied at magnification from 100 to 400 times on the horizontal and vertical surfaces of the samples after etching with a 2% NaOH aqueous solution. Findings: Aluminium cast alloy of Al-Si system has been synthesized with the addition of 0.1, 0.2, and 0.3 wt.% ultrafine SiC modifier. It was found that the modification of the AlSi12 alloy by SiC particles of 3-5 pm in size led to an improvement of its microstructure due to the reduction of the volume fraction of micropores and primary Si crystals. It was shown that the AlSi12 aluminium alloy due to the modification by 0.2 wt.% SiC has the best micromechanical properties and macrostructure density. Research limitations/implications: The obtained research results are relevant for cast specimens of the indicated sizes and shapes. The studies did not take into account the influence of the scale factor of the castings. Practical implications: The developed modification technology was recommended for use in the conditions of the foundry "Dnipropetrovsk Aggregate Plant" (Dnipro, Ukraine). Originality/value: The technology of AlSi12 alloy modification of ultrafine SIC modifier with a particle size of 3-5 pm was used for the first time.
Źródło:
Archives of Materials Science and Engineering; 2020, 101, 2; 57--62
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives
Autorzy:
Szala, Mirosław
Szafran, Michał
Macek, Wojciech
Marchenko, Stanislav
Hejwowski, Tadeusz
Powiązania:
https://bibliotekanauki.pl/articles/103045.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
abrasion
wear resistance
dry sand-rubber wheel test
garnet
aluminum oxide
silicon carbide
steel
hardness
microstructure
odporność na ścieranie
test koła suchy piasek-guma
granat
tlenek glinu
węglik krzemu
stal
twardość
mikrostruktura
Opis:
The steel presents a wide field of application. The abrasive wear resistance of steel relies mainly on the microstructure, hardness as well as on the abrasive material properties. Moreover, the selection of a abrasion-resistant grade of steel still seems to be a crucial and unsolved problem, especially due to the fact that the actual operating conditions can be affected by the presence of different abrasive materials. The aim of this work was to determine the effect of different abrasive grit materials i.e. garnet, corundum and carborundum on the abrasive wear result of a commonly used in industry practice steels i.e. S235, S355, C45, AISI 304 and Hardox 500. The microstructure of the steel was investigated using light optical microscopy. Moreover, hardness was measured with Vickers hardness tester. Additionally, the size and morphology of the abrasive materials were characterized. The abrasion tests were conducted with the usage of T-07 tribotester (dry sand rubber wheel). The results demonstrate that the hardness and structure of steels and hardness of abrasive grids influenced the wear results. The abrasive wear behavior of steels was dominated by microscratching and microcutting wear mechanisms. The highest mass loss was obtained for garnet, corundum, and carborundum, respectively. The usage of various abrasives results in different abrasion resistance for each tested steel grade. The AISI 304 austenitic stainless steel presents an outstanding abrasive wear resistance while usage of corundum and Hardox 500 while using a garnet as abrasive material. The C45 carbon steel was less resistant than AISI 304 for all three examined abrasives. The lowest resistance to wear in garnet and carborundum was obtained for the S235JR and S355J2 ferritic-perlitic carbon steels and in corundum for Hardox 500 which has tempered martensitic structure.
Źródło:
Advances in Science and Technology. Research Journal; 2019, 13, 4; 151-161
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies