Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Maj, K." wg kryterium: Autor


Wyświetlanie 1-7 z 7
Tytuł:
Evaluation of Impact Strength and Microstructure as Quality Criteria for Selected Materials
Autorzy:
Maj, M.
Pietrzak, K.
Lasota, P.
Powiązania:
https://bibliotekanauki.pl/articles/379533.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
steel
cast iron
hardness
microstructure
impact strength
stal
żeliwo
twardość
mikrostruktura
wytrzymałość
Opis:
The article presents the results of analysis of the chemical composition, hardness, microstructure and toughness of selected structural materials. The focus is on the results of impact tests carried out on the 40H steel quenched and tempered at three different temperatures, on grey cast iron used in industrial practice (cast material for brake drums) and on ADI, all of them being considered representatives of the group of materials commonly used in the production of structural elements and finished products, including items for use in the automotive industry. The impact tests were performed at a reduced temperature (-20°C), at room temperature (20°C) and at elevated temperature (150°C), comparing the results obtained with the microstructure of materials tested. It has been shown that in the case of steel, the smallest changes in microstructure cause changes in toughness, while the effect of tempering temperature is in this case of secondary importance. It was also proved that under the conditions of ambient temperature and reduced temperature, better results were obtained for ADI. At elevated temperature, better results were obtained for grey iron castings.
Źródło:
Archives of Foundry Engineering; 2014, 14, 1 spec.; 199-204
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanical Characteristics of Ductile Iron Determined in an Original Modified Low Cycle test
Autorzy:
Maj, M.
Pietrzak, K.
Klasik, A.
Powiązania:
https://bibliotekanauki.pl/articles/379780.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
iron
mechanical properties
microstructure
żelazo
właściwości mechaniczne
mikrostruktura
Opis:
The results presented in this article are part of the research on fatigue life of various foundry alloys carried out in recent years in the Lukasiewicz Research Network – Institute of Precision Mechanics and AGH University of Science and Technology, Faculty of Foundry Engineering. The article discusses the test results obtained for the EN-GJS-600-3 cast iron in an original modified low-cycle fatigue test (MLCF), which seems to be a beneficial research tool allowing its users to evaluate the mechanical properties of materials with microstructural heterogeneities under both static and dynamic loads. For a comprehensive analysis of the mechanical behaviour with a focus on fatigue life of alloys, an original modified low cycle fatigue method (MLCF) adapted to the actually available test machine was used. The results of metallographic examinations carried out by light microscopy were also presented. From the analysis of the results of the conducted mechanical tests and structural examinations it follows that the MLCF method is fully applicable in a quick and economically justified assessment of the quality of ductile iron after normalizing treatment.
Źródło:
Archives of Foundry Engineering; 2019, 4; 27-32
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Microstructure and Mechanical Characteristics of the Ternary SnZnAl Lead-Free Alloy
Autorzy:
Pietrzak, K.
Klasik, A.
Maj, M.
Sobczak, N.
Powiązania:
https://bibliotekanauki.pl/articles/380398.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
lead free alloy
microstructure
mechanical properties
scanning electron microscopy
stop bezołowiowy
mikrostruktura
właściwości mechaniczne
mikroskop skaningowy
Opis:
The paper describes the studies of ternary SnZn9Al1.5 lead-free alloy from the viewpoint of its mechanical behavior as well as microstructure examined by the light and scanning electron microscopy. The authors focused their attention specifically on the fatigue parameters determined by the original modified low-cycle fatigue method (MLCF), which in a quick and economically justified way allows determination of a number of mechanical parameters based on the measurement data coming from one test sample only. The effect of the addition of 1.5% Al to the binary eutectic SnZn9 alloy on its microstructure and the obtained level of mechanical parameters was analyzed. The phases and intermetallic compounds occurring in the alloy were identified based on the chemical analysis carried out in micro-areas by the SEM/EDS technique. It was shown that the addition of 1.5% Al to the binary eutectic SnZn9 alloy resulted in a more favorable microstructure and consequently had a positive effect on the mechanical parameters of the alloy. Based on the conducted research, it was recommended to use a combinatorial method based on the phase quanta theory to quickly evaluate the microstructure and the original MLCF method to determine a number of mechanical parameters.
Źródło:
Archives of Foundry Engineering; 2018, 18, 3; 31-36
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fatigue Life and Microstructure after Multiple Remelting of A359 Matrix Composites Reinforced with SiC Particles
Autorzy:
Klasik, A.
Maj, M.
Pietrzak, K.
Wojciechowski, A.
Sobczak, J.
Powiązania:
https://bibliotekanauki.pl/articles/352210.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
alloy
composite
microstructure
properties
recycling
Opis:
The article presents the results of fatigue life tests and microstructure examinations of A359 alloy matrix composites (F3S.10S and F3S.30S) containing 10 and 30wt% of SiC particles, subjected to multiple remelting by conventional gravity casting. Mechanical characteristics were determined in a modified low cycle fatigue (MLCF) test, enabling rapid estimation of fatigue life and other mechanical parameters in practice of any material. Qualitative and quantitative metallographic examinations were also carried out. The quantitative evaluation of microstructure was performed by computer image analysis. A set of geometrical parameters of the reinforcing particles, pores and eutectic precipitates present in the metal matrix was determined. The relationships between the mechanical parameters, structural characteristics and the number of remelting operations were presented. It was found that up to the fourth remelting, the mechanical characteristics, including fatigue life, are slightly deteriorated but decrease gradually in the subsequent operations of remelting. The observed effect is mainly due to the shrinkage porosity occurring as a result of gravity casting. To eliminate this defect, the use of squeeze casting process was recommended. It has also been shown that multiple remelting can be an easy and economically well-founded alternative to other more expensive recycling methods.
Źródło:
Archives of Metallurgy and Materials; 2016, 61, 4; 2123-2128
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative Studies of Microstructure and Fatigue Life of Selected Lead-free Alloys
Autorzy:
Pietrzak, K.
Klasik, A.
Maj, M.
Sobczak, N.
Wojciechowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/379514.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
lead free alloys
microstructure
mechanical properties
stopy bezołowiowe
mikrostruktura
właściwości mechaniczne
Opis:
Lead-free alloys containing various amounts of zinc (4.5%, 9%, 13%) and constant copper addition (1%) were discussed. The results of microstructure examinations carried out by light microscopy (qualitative and quantitative) and by SEM were presented. In the light microscopy, a combinatorial method was used for the quantitative evaluation of microstructure. In general, this method is based on the phase quanta theory according to which every microstructure can be treated as an arrangement of phases/structural components in the matrix material. Based on this method, selected geometrical parameters of the alloy microstructure were determined. SEM examinations were based on chemical analyses carried out in microregions by EDS technique. The aim of the analyses was to identify the intermetallic phases/compounds occurring in the examined alloys. In fatigue testing, a modified low cycle fatigue test method (MLCF) was used. Its undeniable advantage is the fact that each time, using one sample only, several mechanical parameters can be estimated. As a result of structure examinations, the effect of alloying elements on the formation of intermetallic phases and compounds identified in the examined lead-free alloys was determined. In turn, the results of mechanical tests showed the effect of intermetallic phases identified in the examined alloys on their fatigue life. Some concepts and advantages of the use of the combinatorial and MLCF methods in materials research were also presented.
Źródło:
Archives of Foundry Engineering; 2017, 17, 3; 111-116
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Microstructural Aspects of Fatigue Parameters of Lead-Free Sn-Zn Solders with Various Zn Content
Autorzy:
Pietrzak, K.
Klasik, A.
Maj, M.
Wojciechowski, A.
Sobczak, N.
Powiązania:
https://bibliotekanauki.pl/articles/379846.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
lutowanie bezołowiowe
mikrostruktura
właściwości mechaniczne
lead-free solders
microstructure
mechanical properties
Opis:
The study includes the results of research conducted on selected lead-free binary solder alloys designed for operation at high temperatures. The results of qualitative and quantitative metallographic examinations of SnZn alloys with various Zn content are presented. The quantitative microstructure analysis was carried out using a combinatorial method based on phase quanta theory, according to which any microstructure can be treated as an array of elements disposed in the matrix material. Fatigue tests were also performed using the capabilities of a modified version of the LCF method hereinafter referred to in short as MLCF, which is particularly useful in the estimation of mechanical parameters when there are difficulties in obtaining a large number of samples normally required for the LCF test. The fatigue life of alloys was analyzed in the context of their microstructure. It has been shown that the mechanical properties are improved with the Zn content increasing in the alloy. However, the best properties were obtained in the alloy with a chemical composition close to the eutectic system, when the Zn-rich precipitates showed the most preferred morphological characteristics. At higher content of Zn, a strong structural notch was formed in the alloy as a consequence of the formation in the microstructure of a large amount of the needle-like Zn-rich precipitates deteriorating the mechanical characteristics. Thus, the results obtained during previous own studies, which in the field of mechanical testing were based on static tensile test only, have been confirmed. It is interesting to note that during fatigue testing, both significant strengthening and weakening of the examined material can be expected. The results of fatigue tests performed on SnZn alloys have proved that in this particular case the material was softened.
Źródło:
Archives of Foundry Engineering; 2017, 17, 1; 131-136
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Microstructural Aspects of Fatigue Life of Sn-Zn Lead-free Solders with 1% of Ag Addition
Autorzy:
Pietrzak, K.
Klasik, A.
Maj, M.
Sobczak, N.
Wojciechowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/382245.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
lead-free solders
microstructure
mechanical properties
lutowanie bezołowiowe
mikrostruktura
właściwości mechaniczne
Opis:
The article presents the study results of Sn-Zn lead-free solders with the various Zn content. The results concern the hypoeutectic, eutectic and hypereutectic alloys containing respectively 4.5% Zn, 9% Zn and 13.5% Zn. Moreover, these alloys contain the constant Ag (1%) addition. The aim of the study was to determine the microstructural conditionings of their fatigue life. In particular it was focused on answer the question what meaning can be assigned to the Ag addition in the chemical composition of binary Sn-Zn alloys. The research includes a qualitative and quantitative assessments of the alloy microstructures, that have been carried out in the field of light microscopy (LM). In order to determine some geometrical parameters of the microstructure of alloys the combinatorial method based on the phase quanta theory was applied. Moreover, for the identification necessities the chemical analyses in the micro-areas by SEM/EDS technics were also performed. Based on the SEM/EDS results the phases and intermetallic compounds existing in the examined lead-free solders were identified. The mechanical characteristics were determined by means of the modified low cycle test (MLCF). Based on this method and on the results obtained every time from only one sample the dozen of essential mechanical parameters were evaluated. The research results were the basis of analyzes concerning the effects of microstructural geometrical parameters of lead-free alloys studied on their fatigue life at ambient temperature.
Źródło:
Archives of Foundry Engineering; 2018, 18, 1; 87-92
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies