- Tytuł:
- Vertical heat transport at infinite Prandtl number for micropolar fluid
- Autorzy:
-
Caggio, M.
Kalita, P.
Łukaszewicz, G.
Mizerski, K. A. - Powiązania:
- https://bibliotekanauki.pl/articles/38611128.pdf
- Data publikacji:
- 2020
- Wydawca:
- Instytut Podstawowych Problemów Techniki PAN
- Tematy:
-
micropolar fluid
Rayleigh–Benard convection
heat transport
Rayleigh number
Prandtl number
Nusselt number - Opis:
- We investigate the upper bound on the vertical heat transport in the fully 3D Rayleigh–Bénard convection problem at the infinite Prandtl number for a micropolar fluid. We obtain a bound, given by the cube root of the Rayleigh number, with a logarithmic correction. The derived bound is compared with the optimal known one for the Newtonian fluid. It follows that the (optimal) upper bound for the micropolar fluid is less than the corresponding bound for the Newtonian fluid at the same Rayleigh number. Moreover, strong microrotational diffusion effects can entirely suppress the heat transfer. In the Newtonian limit our purely analytical findings fully agree with estimates and scaling laws obtained from previous theories significantly relying on phenomenology.
- Źródło:
-
Archives of Mechanics; 2020, 72, 6; 525-553
0373-2029 - Pojawia się w:
- Archives of Mechanics
- Dostawca treści:
- Biblioteka Nauki