Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "metoda homotopii" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Homotopy perturbation Shehu transform method for solving fractional models arising in applied sciences
Autorzy:
Maitama, Shehu
Zhao, Weidong
Powiązania:
https://bibliotekanauki.pl/articles/1839856.pdf
Data publikacji:
2021
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
homotopy perturbation technique
Shehu transform
numeric computations
symbolic computations
fractional model
metoda transformacji Shehu
model ułamkowy
obliczenia numeryczne
obliczenia symboliczne
technika homotopii
metoda perturbacji homotopii
Opis:
Using the recently proposed homotopy perturbation Shehu transform method (HPSTM), we successfully construct reliable solutions of some important fractional models arising in applied physical sciences. The nonlinear terms are decomposed using He’s polynomials, and the fractional derivative is calculated in the Caputo sense. Using the analytical method, we obtained the exact solution of the fractional diffusion equation, fractional wave equation and the nonlinear fractional gas dynamic equation.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2021, 20, 1; 71-82
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the semi-analytic technique to deal with nonlinear fractional differential equations
Autorzy:
Khirsariya, Sagar R.
Rao, Snehal B.
Powiązania:
https://bibliotekanauki.pl/articles/2202059.pdf
Data publikacji:
2023
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
fractional differential equation
logistic equation
Fornberg-Whitham equation
homotopy perturbation method
Sawi transform
ułamkowe równanie różniczkowe
równanie logistyczne
równanie Fornberga-Whithama
metoda perturbacji homotopii
Opis:
In this article, we present a novel hybrid approach, by combining the Sawi transform with the homotopy perturbation method, to achieve the approximate and analytic solutions of nonlinear fractional differential equations (ODE as well as PDE) using the time-fractional Caputo derivative. The proposed algorithm is faster and simple compared to other iterative methods. The Sawi transform is used along with the homotopy perturbation method to accelerate the convergence of the series solution. The results discussed using calculations, graphs and tables are compatible for comparison with other known methods like the residual power series method and the exact solution which are discussed in the literature.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2023, 22, 1; 17--30
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heat transfer analysis of non-Newtonian natural convective fluid flow using Homotopy Perturbation and Daftardar-Gejiji & Jafari Methods
Autorzy:
Adeleye, Olurotimi
Yinusa, Ahmed
Powiązania:
https://bibliotekanauki.pl/articles/122431.pdf
Data publikacji:
2019
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
non-Newtonian fluid
natural convection
vertically infinite plates
Daftardar-Gejiji & Jafari Method
DJM
Homotopy Perturbation Method
HPM
ciecz nieniutonowska
konwekcja naturalna
metoda Daftardar-Gejiji i Jafari
metoda perturbacji homotopii
Opis:
In this paper, the analytical solution of natural convective heat transfer of a non-Newtonian fluid flow between two vertical infinite plates using the Homotopy Perturbation Method (HPM) and Daftardar-Gejiji & Jafari Method (DJM) is presented. The heat transfer problem of natural convection is observed in many engineering fields including geothermal systems, heat exchangers, petroleum reservoirs, nuclear waste reserves, etc. The problem which is modelled as fully coupled nonlinear ordinary differential equations requires special analytical techniques for its solution. The solutions are obtained using an exact analytical method: the Homotopy Perturbation Method (HPM) and a semi-analytical method: the Daftardar-Gejiji & Jafari Method (DJM). These solutions are compared with solutions obtained from the Runge-Kutta numerical method. The results are in good agreement with the numerical solutions. The effects of the Eckert number, Prandtl number and the non-Newtonian fluid viscosity parameter on the non-dimensional temperature and velocity of the fluid are investigated. The results obtained from the analytical method show that the method can be applied to predict excellent results of the problem and can be used for parametric studies of the problem. From the results, it is shown that when the Prandtl number and the Eckert number are increased, there is an increase in both temperature and fluid flow velocity.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2019, 18, 2; 5-18
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The stability conditions of the cubic damping Van der Pol-Duffing oscillator using the HPM with the frequency-expansion technology
Autorzy:
El-Dib, Y. O.
Powiązania:
https://bibliotekanauki.pl/articles/122293.pdf
Data publikacji:
2018
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
homotopy perturbation method
nonlinear oscillators
cubic nonlinear damping van der Pol’s equation
nonlinear frequency analysis
stability analysis
metoda perturbacji homotopii
HPM
homotopijna metoda perturbacyjna
oscylator Van der Pol-Duffing
analiza stabilności
teoria perturbacji
oscylator nieliniowy
analiza częstotliwościowa
Opis:
In this paper, we perform the frequency-expansion formula for the nonlinear cubic damping van der Pol’s equation, and the nonlinear frequency is derived. Stability conditions are performed, for the first time ever, by the nonlinear frequency technology and for the nonlinear oscillator. In terms of the van der Pol’s coefficients the stability conditions have been performed. Further, the stability conditions are performed in the case of the complex damping coefficients. Moreover, the study has been extended to include the influence of a forcing van der Pol’ oscillator. Stability conditions have been derived at each resonance case. Redoing the perturbation theory for the van der Pol oscillator illustrates more of a resonance formulation such as sub-harmonic resonance and super-harmonic resonance. More approximate nonlinear dispersion relations of quartic and quintic forms in the squaring of the extended frequency are derived, respectively.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2018, 17, 3; 31-44
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solutions of Benjamin-Bona-Mahony, modified Camassa-Holm and Degasperis Procesi equations using an iterative method
Autorzy:
Kumar, Manoj
Powiązania:
https://bibliotekanauki.pl/articles/2202030.pdf
Data publikacji:
2022
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
nonlinear Bejamin-Bona-Mahony equation
modified Camassa-Holm equation
modified Degasperis-Procesi equation
Daftardar-Gejji and Jafari method
homotopy perturbation method
Adomian decomposition method
nieliniowe równanie Bejamina-Bony-Mahony'ego
zmodyfikowane równanie Camassy-Holma
zmodyfikowane równanie Degasperisa-Procesiego
metoda Daftardara-Gejji i Jafari
metoda perturbacji homotopii
metoda dekompozycji Adomiana
Opis:
In the present paper, we solve the non-linear Benjamin-Bona-Mahony, modified Camassa-Holm, and Degasperis-Procesi equations using an iterative method introduced by Daftardar-Gejji and Jafari. Results are compared with those obtained by other iterative methods such as the Adomian decomposition method and homotopy perturbation method. It is observed that the proposed method is computationally inexpensive and yields more accurate solutions than the Adomian decomposition method and the homotopy perturbation method.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2022, 21, 3; 59--72
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies