Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "metoda największej wiarygodności" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Wykorzystanie filtru cząsteczkowego w problemie identyfikacji układów automatyki
Employ a particle filter in the identification procedure
Autorzy:
Kozierski, P.
Powiązania:
https://bibliotekanauki.pl/articles/158697.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Elektrotechniki
Tematy:
identyfikacja
metoda największej wiarygodności
filtr cząsteczkowy
oczekiwanie-maksymalizacja
identification
maximum likelihood method
particle filter
expectation-maximization
Opis:
W artykule przedstawiono sposób identyfikacji parametrycznej obiektów nieliniowych zapisanych w przestrzeni stanu. Identyfikacja wykorzystuje metodę największej wiarygodności (ML), z zastosowaniem filtru cząsteczkowego i algorytmu oczekiwanie-maksymalizacja (EM).
A way of parameter estimation of nonlinear dynamic systems in state-space form is presented. The identification uses Maximum Likelihood method (ML), Particle Filter approach and Expectation-Maximization algorithm (EM).
Źródło:
Prace Instytutu Elektrotechniki; 2012, 260; 157-169
0032-6216
Pojawia się w:
Prace Instytutu Elektrotechniki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment model of cutting tool condition for real-time supervision system
Model oceny stanu narzędzia skrawającego dla systemu nadzoru w czasie rzeczywistym
Autorzy:
Kozłowski, Edward
Mazurkiewicz, Dariusz
Żabiński, Tomasz
Prucnal, Sławomir
Sęp, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/301525.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
predictive maintenance
logistic regression
elasticnet
maximum likelihood method
ROC
AUC
predykcyjne utrzymanie ruchu
regresja logistyczna
metoda największej wiarygodności
Opis:
Further development of manufacturing technology, in particular machining requires the search for new innovative technological solutions. This applies in particular to the advanced processing of measurement data from diagnostic and monitoring systems. The increasing amount of data collected by the embedded measurement systems requires development of effective analytical tools to efficiently transform the data into knowledge and implement autonomous machine tools of the future. This issue is of particular importance to assess the condition of the tool and predict its durability, which are crucial for reliability and quality of the manufacturing process. Therefore, a mathematical model was developed to enable effective, real-time classification of the cutting blade status. The model was verified based on real measurement data from an industrial machine tool.
Dalszy rozwój inżynierii produkcji, w szczególności obróbki skrawaniem, wymaga poszukiwania nowych innowacyjnych rozwiązań technologicznych. Dotyczy to w szczególności zaawansowanego przetwarzania danych pomiarowych pochodzących z systemów diagnostycznych i monitorujących. Rosnąca ilość danych gromadzonych przez wbudowane systemy pomiarowe wymaga opracowania skutecznych narzędzi analitycznych, aby efektywnie przekształcać dane w wiedzę i wdrażać autonomiczne obrabiarki przyszłości. Kwestia ta ma szczególne znaczenie dla oceny stanu narzędzia i przewidywania jego trwałości, które są kluczowe dla niezawodności i jakości procesu produkcyjnego. Dlatego opracowano nowy model matematyczny, którego zadaniem jest skuteczna klasyfikacja stanu ostrza narzędzia skrawającego realizowana w czasie rzeczywistym. Opracowany model został zweryfikowany na podstawie rzeczywistych danych pomiarowych z przemysłowej obrabiarki.
Źródło:
Eksploatacja i Niezawodność; 2019, 21, 4; 679-685
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Maximum likelihood estimation for identification of aircraft aerodynamic derivatives
Identyfikacja pochodnych aerodynamicznych Metodą Największej Wiarygodności
Autorzy:
Lichota, P.
Lasek, M.
Powiązania:
https://bibliotekanauki.pl/articles/139934.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
flight dynamics
flight data recorder
Levenberg-Marquardt algorithm
maximum likelihood estimation
output error method
parametric identification
dynamika lotu
pokładowy rejestrator lotu
algorytm Levenberga-Marquardta
metoda największej wiarygodności
metoda błędu wyjścia
identyfikacja parametryczna
Opis:
This article investigates identification of aircraft aerodynamic derivatives. The identification is performed on the basis of the parameters stored by Flight Data Recorder. The problem is solved in time domain by Quad-M Method. Aircraft dynamics is described by a parametric model that is defined in Body-Fixed-Coordinate System. Identification of the aerodynamic derivatives is obtained by Maximum Likelihood Estimation. For finding cost function minimum, Lavenberg-Marquardt Algorithm is used. Additional effects due to process noise are included in the state-space representation. The impact of initial values on the solution is discussed. The presented method was implemented in Matlab R2009b environment.
Artykuł zawiera informacje na temat identyfikacji pochodnych aerodynamicznych. Estymacja opiera się o parametry zapisywane przez Pokładowy Rejestrator Lotu. Zagadnienie jest rozważane w dziedzinie czasu przy użyciu podejścia Quad-M. Do opisu dynamiki samolotu wykorzystano model parametryczny zdefiniowany w układzie sztywno związanym z samolotem. Do identyfikacji wykorzystano Metodę Największej Wiarygodności. Do znalezienia minimum funkcji celu użyto algorytm Levenberga-Marquardta. W modelu uwzględniono wpływ dodatkowych czynników reprezentowany przez szum przetwarzania. Omówiono wpływ wartości początkowych na rozwiązanie. Prezentowane wyniki uzyskano w środowisku Matlab R2009b.
Źródło:
Archive of Mechanical Engineering; 2013, LX, 2; 219-230
0004-0738
Pojawia się w:
Archive of Mechanical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie danych lotniczego skaningu laserowego i zdjęć lotniczych do klasyfikacji pokrycia terenu
Land cover classification using airborne laser scanning data and aerial images
Autorzy:
Borkowski, A.
Tymków, P.
Powiązania:
https://bibliotekanauki.pl/articles/130474.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
lotniczy skaning laserowy
zdjęcia lotnicze
klasyfikacja nadzorowana
sztuczne sieci neuronowe
metoda największej wiarygodności
airborne laser scanning (ALS)
aerial images
supervised classification
artificial neural networks
maximum likehood
k-nearest neighbour method
Opis:
Informacja bezpośrednia i pośrednia dotycząca powierzchni terenu i jego pokrycia zawarta w danych skaningu laserowego może być wykorzystana do klasyfikacji form pokrycia terenu. W artykule podjęto próbę oceny przydatności tego typu danych jako źródła informacji uzupełniających wektor cech, zbudowany na podstawie obrazów lotniczych, w procesie klasyfikacji pokrycia terenu. Wykorzystano dane skanowania laserowego pozyskane za pomocą systemu ScaLARS. Przeprowadzono szereg eksperymentów numerycznych polegających na klasyfikacji fragmentu obszaru doliny rzeki Widawy za pomocą różnych algorytmów klasyfikacji oraz przy różnych kombinacjach wektora cech branych pod uwagę. W testach wykorzystano jednokierunkowe sztuczne sieci neuronowe, metodę największej wiarygodności, oraz metodę k-najbliższych sąsiadów. Porównano jakość klasyfikacji opartej o następujące cechy: wartości kanałów RGB, parametry charakteryzujące teksturę, informacje o wysokości form pokrycia terenu estymowane na podstawie numerycznego modelu terenu oraz numerycznego modelu pokrycia terenu, model charakteryzujący rozrzut wartości wysokości danych skaningu zarejestrowanych na jednostce powierzchni oraz intensywność promienia laserowego. Ilościowa ocenę dokładności oparto o macierz niezgodności, obliczana na podstawie porównania otrzymanego wyniku klasyfikacji dla wektora testowego do wzorca wykonanego manualnie metoda digitalizacji. Najlepsze wyniki klasyfikacji otrzymano za pomocą klasyfikatora neuronowego. Stwierdzono ponadto, że zastąpienie modelu numerycznego pokrycia terenu wariancja wysokości surowych danych lotniczego skaningu laserowego daje poprawne rezultaty klasyfikacji przy znacznej redukcji obliczeń.
The direct and indirect information about terrain surface and land use contained in laser scanning data sets allow to provide the automatic classification of land cover. An attempt of using scanning data as a supplementary source for such classification based on aerial photos was performed in this article. A continuous-wave (CW) ScaLARS laser system was used to receive scanning data. Numerous experiments consisting in the classification of a part of Widawa River valley were carried out in order to find the best combination of data set and classification method. Three classification methods were used: multilayer neural networks, maximum likelihood classifier and k-nearest neighbour method. The classification was made and evaluated using: aerial images (RGB model), texture features, differential model of height of land cover, based on digital surface model (DSM), and digital terrain model (DTM), model of height dispersion represented by variance of measured points height in a regular grid and intensity image. In order to quantify the quality of the results, a confusion matrix was created for each testing pattern based on manual digitalized reference data. The best results are obtained by artificial neural network classifier. The use of variance of height, instead of differential model, gives satisfactory results, and the obtaining of this feature is easy and fast in comparison to DTM and DSM building process.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17a; 93-103
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies