Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fuzzy rule" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Sprzętowa realizacja procesu dekompozycji lingwistycznej bazy wiedzy systemu wnioskowania przybliżonego
Hardware Implementation of the Knowledge Base Linguistic Decomposition of the Fuzzy Inference System
Autorzy:
Wyrwoł, B.
Powiązania:
https://bibliotekanauki.pl/articles/155723.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
funkcja przynależności
reguła rozmyta
baza wiedzy
wnioskowanie przybliżone
dekompozycja relacyjna
dekompozycja lingwistyczna
układ reprogramowalny FPGA
membership function
fuzzy rule
fuzzy relation
knowledge base
fuzzy inference
relational decomposition
linguistic decomposition
FPGA
Opis:
Metoda dekompozycji relacji rozmytych M. M. Gupty pozwala ograniczyć nakłady sprzętowe niezbędne w realizacji układowej systemów relacyjnych, jednak charakteryzuje się wysokim nakładem obliczeniowym. Tę niekorzystną własność można wyeliminować poprzez rozszerzenie metody podstawowej na płaszczyznę lingwistyczną. Podejście to pozwala wykorzystać uzyskane wyniki w realizacji zarówno systemów regułowych, relacyjnych, jak i mieszanych. W pracy przedstawiono sprzętowy modułu realizujący proces dekompozycji lingwistycznej bazy wiedzy zaimplementowany w systemie wnioskowania przybliżonego FPGA-FIS.
The hardware cost of the FATI relational fuzzy inference system can be reduced using M. M. Gupta's decomposition technique. It is based at projection operation defined for fuzzy relation. A lot of time is required to compute a global relation and a large memory to store it. In the paper has been proposed a modified M. M. Gupta's decomposition method expanded on linguistic level. It allows reducing hardware cost of the implementation of the FITA or FITA/FATI fuzzy inference systems. It can be implemented as a hardware unit in an FPGA structure to decrease an initialization time of the FPGA-FIS system.
Źródło:
Pomiary Automatyka Kontrola; 2007, R. 53, nr 7, 7; 33-35
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sprzętowa implementacja algorytmów dekompozycji lingwistycznej opartych na podziale bazy wiedzy w układzie FPGA
Hardware implementation of linguistic de-composition algorithms based on partitioning the knowledge base in the FPGA chip
Autorzy:
Wyrwoł, B.
Powiązania:
https://bibliotekanauki.pl/articles/972152.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
funkcja przynależności
reguła rozmyta
reguła sprzeczna
relacja rozmyta
baza wiedzy
dekompozycja relacyjna
dekompozycja lingwistyczna
system regułowy FITA
system relacyjny FATI
wnioskowanie przybliżone
FPGA
membership function
fuzzy rule
inconsistent rule
fuzzy relation
knowledge base
relational decomposition
linguistic decomposition
First Inference Then Aggregation system (FITA)
First Aggregation Then Inference system (FATI)
fuzzy inference
Opis:
Układowe realizacje systemów wnioskowania przybliżonego wymagają często znacznych nakładów. Zmniejszenie ich jest możliwe poprzez zastosowanie metody dekompozycji Gupty i przedstawieniu systemu jako struktury hierarchicznej. W celu wyeliminowania jej niekorzystnych własności konieczny jest wstępny podział bazy wiedzy. Zaproponowana została metoda najlepszego wyboru wykorzystująca wybrane algorytmy podziału, zaimplementowana w sprzętowym systemie wnioskowania przybliżonego FPGA-FIS.
The hardware cost of a fuzzy inference system can be reduced using the Gupta's relational decomposition technique [1]. The system can be represented as a hierarchical architecture that comprises a set of Single Input Single Output subsystems (Fig. 1). The decomposition has some disadvantages, computation of the global relation ℜ is an extremely time-consuming process and a large memory is necessary to store it. They can be eliminated if projection is expanded on linguistic level and decomposition is used for the knowledge base (1), (Fig. 2) [2]. The projection operation (on relational or linguistic level) in some cases can lead to inevitable loss of information because of its approximate nature [3]. To avoid the inference error (the output result is more fuzzy than that obtained in the classical system architecture (3)) methods for partitioning (5) the knowledge base KB[Y , XK,? , X1] into p subbases without inconsistent rules (4) are proposed [4]. In Section 3 the methods based on partitioning towards a defined input linguistic variable (Fig. 3) and elimination of the inconsistent rules (Fig. 4) are described [5, 6]. The algorithms are simple and fast but the results are not optimal in all cases (hardware cost depends on the number of subsystems p, Tab. 1). Thus, the method of the best choice is proposed and implemented in the FPGA fuzzy inference system as a DMU (Decomposition Management Unit) module (Fig. 6).
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 7, 7; 511-514
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
MODEL-ORIENTED DECISION SUPPORT SYSTEM AND FUZZY INFORMATION PROCESSING FOR INCREASING EFFICIENCY OF UNIVERSITY – IT-COMPANY CONSORTIA
Autorzy:
Kondratenko, Yuriy P.
Kondratenko, Galyna V.
Sidenko, Ievgen V.
Kharchenko, Vyacheslav S.
Powiązania:
https://bibliotekanauki.pl/articles/453957.pdf
Data publikacji:
2015
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
decision support system
fuzzy logic
linguistic model
membership function
linguistic term
rule base
fuzzyfication
defuzzyfication
university – IT-company consortium
Opis:
In the paper the existing approaches for improving abovementioned collaboration processes, technologies and methodologies based on efficient methods of optimization and decision making, modern computer-based systems and Internet opportunities are been discussed. The main contribution of the authors in this paper is a structure of computerized decision making system (CDMS) which can help partners from education and industry to find the best model of university – IT-company consortia from proposed set of efficient models A1, A2, B, C and their rational combinations.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2015, 16, 1; 157-166
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies