Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "time-scales" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals
Autorzy:
Kubiaczyk, Ireneusz
Sikorska-Nowak, Aneta
Powiązania:
https://bibliotekanauki.pl/articles/729401.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Cauchy dynamic problem
Banach space
measure of noncompactness
Carathéodory's type solutions
time scales
fixed point
Opis:
In the paper, we prove the existence of solutions and Carathéodory's type solutions of the dynamic Cauchy problem
$x^Δ(t) = f(t,x(t))$, t ∈ T,
x(0) = x₀,
where T denotes an unbounded time scale (a nonempty closed subset of R and such that there exists a sequence (xₙ) in T and xₙ → ∞) and f is continuous or satisfies Carathéodory's conditions and some conditions expressed in terms of measures of noncompactness. The Sadovskii fixed point theorem and Ambrosetti's lemma are used to prove the main result. The results presented in the paper are new not only for Banach valued functions, but also for real-valued functions.
Źródło:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2009, 29, 1; 113-126
1509-9407
Pojawia się w:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Integro-differential equations on time scales with Henstock-Kurzweil delta integrals
Autorzy:
Sikorska-Nowak, Aneta
Powiązania:
https://bibliotekanauki.pl/articles/729234.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
integro-differential equations
nonlinear Volterra integral equation
time scales
Henstock-Kurzweil delta integral
HL delta integral
Banach space
fixed point
measure of noncompactness
Carathéodory solutions
Opis:
In this paper we prove existence theorems for integro - differential equations
$x^Δ (t) = f(t,x(t),∫₀^t k(t,s,x(s))Δs)$,
t ∈ Iₐ = [0,a] ∩ T, a ∈ R₊,
x(0) = x₀
where T denotes a time scale (nonempty closed subset of real numbers R), Iₐ is a time scale interval. Functions f,k are Carathéodory functions with values in a Banach space E and the integral is taken in the sense of Henstock-Kurzweil delta integral, which generalizes the Henstock-Kurzweil integral.
Additionally, functions f and k satisfy some boundary conditions and conditions expressed in terms of measures of noncompactness. Moreover, we prove an Ambrosetti type lemma on a time scale.
Źródło:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2011, 31, 1; 71-90
1509-9407
Pojawia się w:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies