Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "model error" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
ROBUSTNESS OF TWEEDIE MODEL OF RESERVES WITH RESPECT TO DISTRIBUTION OF SEVERITY OF CLAIMS
Autorzy:
Boratyńska, Agata
Juszczak, Dorota
Powiązania:
https://bibliotekanauki.pl/articles/453337.pdf
Data publikacji:
2015
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
loss reserves
Tweedie model
Poisson and gamma distribution
ε-contamination
generalized linear model
mean square error
bias
prediction
Opis:
The aim of the work is to discuss the robustness of estimation procedures and robustness of prediction in Tweedie's compound Poisson model. This model is applied to the claim reserving problem. The quality of parameter estimators and predictors is studied when the distribution of severity of claims is disturbed. The ε-contamination class of distributions is considered. The example, where errors of estimators are large is presented. The simulation methods, using the R programming environment, are applied.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2015, 16, 1; 53-74
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Quantum inspiration to build a neural model based on the Day-Ahead Market of the Polish Power Exchange
Autorzy:
Ruciński, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/2052430.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
Neural Modeling
day-ahead market
Polish power exchange
mean square error
determination index
quantum inspired neural model
Opis:
The article is an attempt of the methodological approach to the proposed quantum-inspired method of neural modeling of prices quoted on the Day-Ahead Market operating at TGE S.A. In the proposed quantum-inspired neural model it was assumed, inter alia, that it is composed of 12 parallel Perceptron ANNs with one hidden layer. Moreover, it was assumed that weights and biases as processing elements are described by density matrices, and the values flowing through the Artificial Neural Network of Signals are represented by qubits. Calculations checking the correctness of the adopted method and model were carried out with the use of linear algebra and vector-matrix calculus in MATLAB and Simulink environments. The obtained research results were compared to the results obtained from the neural model with the use of a comparative model.
Źródło:
Studia Informatica : systems and information technology; 2021, 1-2(25); 23-37
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie ilości ścieków dopływających do oczyszczalni za pomocą sztucznych sieci neuronowych z wykorzystaniem liniowej analizy dyskryminacyjnej
Forecasting the sewage inflow into a treatment plant using artificial neural networks and linear discriminant analysis
Autorzy:
Szeląg, B.
Studziński, J.
Chmielowski, K.
Leśniańska, A.
Rojek, I.
Powiązania:
https://bibliotekanauki.pl/articles/237303.pdf
Data publikacji:
2018
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
Wastewater inflow
sewage treatment plant
water level
daily precipitation
artificial neural networks
discriminant models
mean square error
mean percentage error
relative error
residual relative error
importance coefficient
dopływ ścieków
oczyszczalnia ścieków
poziom wody
opad dobowy
sztuczne sieci neuronowe
model dyskryminacyjny
błąd średniokwadratowy
średni błąd procentowy
błąd względny
względny błąd resztowy
współczynnik ważności
Opis:
W pracy przedstawiono wyniki prognozowania ilości ścieków dopływających do oczyszczalni komunalnej w Rzeszowie z wykorzystaniem perceptronowych wielowarstwowych sztucznych sieci neuronowych. W modelu prognostycznym przyjęto następujące zmienne niezależne: zmierzona ilość ścieków dopływających do oczyszczalni określona w poprzednich dobach, poziom wody w Wisłoku (odbiornik ścieków), suma dobowych opadów atmosferycznych oraz dobowa ilość wody tłoczonej do sieci wodociągowej. Przeprowadzone obliczenia wykazały, że wśród rozpatrywanych zmiennych istotny wpływ na zdolność predykcyjną modelu prognostycznego miał poziom wody w Wisłoku, wysokość opadów atmosferycznych oraz ilość ścieków dopływająca do obiektu zmierzona w poprzednich dniach. Analizowano również wpływ poszczególnych parametrów strukturalnych modelu opartego na sztucznych sieciach neuronowych na wyniki prognozowania. Przeprowadzone badania, z wykorzystaniem drzew klasyfikacyjnych, wykazały, że na liczbę neuronów w warstwie ukrytej wpływała liczba sygnałów wejściowych do modelu, natomiast rodzaj funkcji aktywacji w warstwach ukrytej i wyjściowej miał mniejsze znaczenie, co potwierdziły wartości o znaczeniu predykcyjnym. Badano również możliwość zastosowania liniowej analizy dyskryminacyjnej do oceny zdolności predykcyjnych skonstruowanych modeli prognostycznych. Uzyskane wyniki wykazały, że liniowa analiza dyskryminacyjna może być ciekawym narzędziem do oceny doboru zmiennych w modelu prognostycznym ilości ścieków dopływających do oczyszczalni.
The paper presents the results of forecasting the sewage inflow into the municipal wastewater treatment plant in Rzeszow using multilayer perceptron neural networks. For the forecast model, the following independent variables were adopted: the measured inflow volume to the treatment plant from the previous days, the water level in the Wislok River (effluent receiver), the total daily precipitation and the daily water inflow into the network. The calculations led to conclusions that variables substantially affecting the prognostic capacity of the forecast model included the water level in the Wislok River, the volume of precipitation and the sewage inflow to the facility from the previous days. Additionally, the impact of individual structural parameters of the model based on artificial neural networks on forecasting results was analyzed. The research conducted with the use of classification trees demonstrated that number of neurons in the hidden layer was influenced by the number of inputs to the model, while the type of activation function in the hidden and output layer was of minor importance which was confirmed by the data of prognostic value. The applicability of a linear discriminant analysis for assessment of prognostic ability of the constructed forecast models was also investigated. The results obtained demonstrated that the linear discriminant model might be an interesting assessment tool to select variables for the forecast model of sewage inflow to a treatment plant.
Źródło:
Ochrona Środowiska; 2018, 40, 4; 9-14
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the smoothed parametric estimation of mixing proportion under fixed design regression model
Autorzy:
Ramakrishnaiah, Y. S.
Trivedi, Manish
Satish, Konda
Powiązania:
https://bibliotekanauki.pl/articles/1359251.pdf
Data publikacji:
2019-04-25
Wydawca:
Główny Urząd Statystyczny
Tematy:
mixture of distributions
mixing proportion
smoothed parametric estimation
fixed design regression model
mean square error
optimal band width
strong consistency
asymptotic normality
Opis:
The present paper revisits an estimator proposed by Boes (1966) - James (1978), herein called BJ estimator, which was constructed for estimating mixing proportion in a mixed model based on independent and identically distributed (i.i.d.) random samples, and also proposes a completely new (smoothed) estimator for mixing proportion based on independent and not identically distributed (non-i.i.d.) random samples. The proposed estimator is nonparametric in true sense based on known “kernel function” as described in the introduction. We investigated the following results of the smoothed estimator under the non-i.i.d. set-up such as (a) its small sample behaviour is compared with the unsmoothed version (BJ estimator) based on their mean square errors by using Monte-Carlo simulation, and established the percentage gain in precision of smoothed estimator over its unsmoothed version measured in terms of their mean square error, (b) its large sample properties such as almost surely (a.s.) convergence and asymptotic normality of these estimators are established in the present work. These results are completely new in the literature not only under the case of i.i.d., but also generalises to non-i.i.d. set-up.
Źródło:
Statistics in Transition new series; 2019, 20, 1; 87-102
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies