Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "degree theory" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Acyclic 6-Colouring of Graphs with Maximum Degree 5 and Small Maximum Average Degree
Autorzy:
Fiedorowicz, Anna
Powiązania:
https://bibliotekanauki.pl/articles/30146851.pdf
Data publikacji:
2013-03-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
acyclic colouring
bounded degree graph
maximum average degree
Opis:
A k-colouring of a graph G is a mapping c from the set of vertices of G to the set {1, . . ., k} of colours such that adjacent vertices receive distinct colours. Such a k-colouring is called acyclic, if for every two distinct colours i and j, the subgraph induced by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, every cycle in G has at least three distinct colours. Acyclic colourings were introduced by Gr¨unbaum in 1973, and since then have been widely studied. In particular, the problem of acyclic colourings of graphs with bounded maximum degree has been investigated. In 2011, Kostochka and Stocker showed that any graph with maximum degree 5 can be acyclically coloured with at most 7 colours. The question, whether this bound is achieved, remains open. In this note we prove that any graph with maximum degree 5 and maximum average degree at most 4 admits an acyclic 6-colouring. We also provide examples of graphs with these properties.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 1; 91-99
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Equitable Coloring and Equitable Choosability of Graphs with Small Maximum Average Degree
Autorzy:
Dong, Aijun
Zhang, Xin
Powiązania:
https://bibliotekanauki.pl/articles/31342275.pdf
Data publikacji:
2018-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph coloring
equitable choosability
maximum average degree
Opis:
A graph is said to be equitably $k$-colorable if the vertex set $V (G)$ can be partitioned into $k$ independent subsets $ V_1, V_2, . . ., V_k $ such that $ | | V_i |−| V_j | | \le 1 $ $(1 \le i, j \le k) $. A graph $G$ is equitably $k$-choosable if, for any given $k$-uniform list assignment $L$, $G$ is $L$-colorable and each color appears on at most $ \ceil{ \frac{|V(G)|}{ k } } $ vertices. In this paper, we prove that if $G$ is a graph such that $ mad(G) < 3 $, then $G$ is equitably $k$-colorable and equitably $k$- choosable where $ k \ge \text{max} \{ \Delta (G), 4 \} $. Moreover, if $G$ is a graph such that $ mad(G) < \frac{12}{5} $, then $G$ is equitably $k$-colorable and equitably $k$-choosable where $ k \ge \text{max} \{ \Delta (G), 3 \} $.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 3; 829-839
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Linear List Coloring of Some Sparse Graphs
Autorzy:
Chen, Ming
Li, Yusheng
Zhang, Li
Powiązania:
https://bibliotekanauki.pl/articles/32083756.pdf
Data publikacji:
2021-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
linear coloring
maximum average degree
planar graphs
discharging
Opis:
A linear $k$-coloring of a graph is a proper $k$-coloring of the graph such that any subgraph induced by the vertices of any pair of color classes is a union of vertex-disjoint paths. A graph $G$ is linearly $L$-colorable if there is a linear coloring $c$ of $G$ for a given list assignment $L = \{L(v) : v ∈ V(G)\}$ such that $c(v) ∈ L(v)$ for all $v ∈ V(G)$, and $G$ is linearly $k$-choosable if $G$ is linearly $L$-colorable for any list assignment with $|L(v)| ≥ k$. The smallest integer $k$ such that $G$ is linearly $k$-choosable is called the linear list chromatic number, denoted by $lc_l(G)$. It is clear that \(lc_l(G)≥\Big\lceil\frac{\Delta(G)}{1}\Big\rceil+1\) for any graph $G$ with maximum degree $\Delta(G)$. The maximum average degree of a graph $G$, denoted by $mad(G)$, is the maximum of the average degrees of all subgraphs of $G$. In this note, we shall prove the following. Let $G$ be a graph, (1) if $mad(G)<\frac{8}{3}$ and $\Delta(G) ≥ 7$, then \(lc_l(G)=\Big\lceil\frac{\Delta(G)}{2}\Big\rceil+1\); (2) if $mad(G)<{18}{7}$ and $\Delta(G) ≥ 5$, then \(lc_l(G)=\Big\lceil\frac{\Delta(G)}{2}\Big\rceil+1\); (3) if $mad(G)<{20}{7}$ and $\Delta(G) ≥ 5$, then \(lc_l(G)≤\Big\lceil\frac{\Delta(G)}{2}\Big\rceil+2\).
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 1; 51-64
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Incidence Coloring—Cold Cases
Autorzy:
Kardoš, František
Maceková, Mária
Mockovčiaková, Martina
Sopena, Éric
Soták, Roman
Powiązania:
https://bibliotekanauki.pl/articles/32083735.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
incidence coloring
incidence chromatic number
planar graph
maximum average degree
Opis:
An incidence in a graph G is a pair (v, e) where v is a vertex of G and e is an edge of G incident to v. Two incidences (v, e) and (u, f) are adjacent if at least one of the following holds: (i) v = u, (ii) e = f, or (iii) edge vu is from the set {e, f}. An incidence coloring of G is a coloring of its incidences assigning distinct colors to adjacent incidences. The minimum number of colors needed for incidence coloring of a graph is called the incidence chromatic number. It was proved that at most Δ(G) + 5 colors are enough for an incidence coloring of any planar graph G except for Δ(G) = 6, in which case at most 12 colors are needed. It is also known that every planar graph G with girth at least 6 and Δ(G) ≥ 5 has incidence chromatic number at most Δ(G) + 2. In this paper we present some results on graphs regarding their maximum degree and maximum average degree. We improve the bound for planar graphs with Δ(G) = 6. We show that the incidence chromatic number is at most Δ(G) + 2 for any graph G with mad(G) < 3 and Δ(G) = 4, and for any graph with mad(G)<103 and Δ(G) ≥ 8.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 345-354
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies