Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "maximal function" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates
Autorzy:
Luís Zani, Sérgio
Powiązania:
https://bibliotekanauki.pl/articles/1219073.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
norm inequality
weight
maximal function
homogeneous space
Opis:
Let D be an open subset of a homogeneous space(X,d,μ). Consider the maximal function $M_φ f(x) = sup1/φ(B) ʃ_{B∩∂D} |f|dν$, x∈ D, where the supremum is taken over all balls of the form B = B(a(x),r) with r > t(x) = d(x,∂D), a(x)∈ ∂D is such that d(a(x),x) < 3/2 t(x)$ and φ is a nonnegative set function defined for all Borel sets of X satisfying the quasi-monotonicity and doubling properties. We give a necessary and sufficient condition on the weights w and v for the weighted norm inequality (0.1) $(ʃ_D [M_φ(f)]^q wdμ)^{1/q} ≤ c(ʃ_{∂D} |f|^p vdν)^{1/p}$ to hold when 1 < p < q < ∞, $σdν = v^{1-p'}dν$ is a doubling weight, and dν is a doubling measure, and give a sufficient condition for (0.1) when 1 < p ≤ q < ∞ without assuming that σ is a doubling weight but with an extra assumption on φ. Another characterization for (0.1) is also provided for 1 < p ≤ q < ∞ and D of the form Y×(0,∞), where Y is a homogeneous space with group structure. These results generalize some known theorems in the case when $M_φ$ is the fractional maximal function in $ℝ^{n+1}_+$, that is, when $M_φ f(x,t) = M_γ f(x,t) = sup_{r>t} 1/(ν(B(x,r))^{1-γ}) ʃ_{B(x,r)} |f|dν$, where $(x,t) ∈ ℝ^{n+1}_+$, 0 < γ < 1, and ν is a doubling measure in $ℝ^n$.
Źródło:
Studia Mathematica; 1997, 126, 1; 67-94
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pointwise multipliers for reverse Holder spaces
Autorzy:
M. Buckley, Stephen
Powiązania:
https://bibliotekanauki.pl/articles/1290583.pdf
Data publikacji:
1994
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
reverse Hölder condition
maximal function
weight
doubling measure
Opis:
We classify weights which map reverse Hölder weight spaces to other reverse Hölder weight spaces under pointwise multiplication. We also give some fairly general examples of weights satisfying weak reverse Hölder conditions.
Źródło:
Studia Mathematica; 1994, 109, 1; 23-39
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On convergence for the square root of the Poisson kernel in symmetric spaces of rank 1
Autorzy:
Rönning, Jan-Olav
Powiązania:
https://bibliotekanauki.pl/articles/1219076.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
maximal function
square root of the Poisson kernel
convergence region
symmetric space of rank 1
Opis:
Let P(z,β) be the Poisson kernel in the unit disk , and let $P_{λ}f(z) = ʃ_{∂} P(z,φ)^{1//2+λ} f(φ)dφ$ be the λ -Poisson integral of f, where $f ∈ L^p(∂)$. We let $P_{λ}f$ be the normalization $P_{λ}f//P_{λ}1$. If λ >0, we know that the best (regular) regions where $P_{λ}f$ converges to f for a.a. points on ∂ are of nontangential type. If λ =0 the situation is different. In a previous paper, we proved a result concerning the convergence of $P_0f$ toward f in an $L^p$ weakly tangential region, if $f ∈ L^p(∂)$ and p > 1. In the present paper we will extend the result to symmetric spaces X of rank 1. Let f be an $L^p$ function on the maximal distinguished boundary K/M of X. Then $P_{0}f(x)$ will converge to f(kM) as x tends to kM in an $L^p$ weakly tangential region, for a.a. kM ∈ K/M.
Źródło:
Studia Mathematica; 1997, 125, 3; 219-229
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies