Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Persinger, M.A." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Discrepancies Between Predicted and Observed Intergalactic Magnetic Field Strengths from the Universe’s Total Energy: Is It Contained Within Submatter Spatial Geometry?
Autorzy:
Persinger, M. A.
Powiązania:
https://bibliotekanauki.pl/articles/412513.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
gravitational energy
magnetic energy
electric energy
energy equivalence
spatial geometry
entanglement latency
Mach’s Principle
Opis:
Although the gravitational energy within the distance of the radius of a singularity for a current estimated mass of the universe is equal to ~1069 Joules, congruent solutions for different ages of the universe reflect changes by a factor of π or 8π for identities. The total energy value is equal to the product of primary constants G·μ·ε·ħ·σ·c2 (which results in power, W) when divided by the area of smallest unit of space (area of a circle with a radius of Planck’s Length) and then multiplied by the universe’s current surface area and age. The conspicuous discrepancies of ~2∙103 between the predicted average magnetic intensity within the universe from that total energy and contemporary measurements can be accommodated by the quantitative product of 21.3π4 derived from the classic four-dimensional metric. The equivalent electric field potential divided by the predicted magnetic intensity results in a velocity that has been suggested to reflect the latency for excess correlations to occur across the universe. The most parsimonious explanation for these results is that a large component of the magnetic manifestation of energy in the universe is recondite or occluded within its submatter spatial structure and that the required cohesion or “diffusivity” throughout the volume involves the electric field component. These quantifications may facilitate understanding of Mach’s principle that any part of the universe is influenced by all of its parts.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 11, 1; 18-23
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Relating Casimir to Magnetic Energies Results in Spatial Dimensions That Define Biology Systems
Autorzy:
Persinger, M. A.
Powiązania:
https://bibliotekanauki.pl/articles/412541.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
casimir energy
magnetic energy
neutral hydrogen line energy
magnetic moments
photon rest mass
emergent properties
Opis:
The volume-independence that occurs when Casimir and magnetic energies were equated was employed to solve for optimal spatial separations. For the magnetic moments of a proton and an electron in the presence of a magnetic field strength that produced the energy associated with the neutral hydrogen line, the distances were 1 nm and 24 nm or the width of an ion channel in a plasma cell membrane and the average synaptic width, respectively. The small discrepancies in orbit-spin magnetic moments of the electron with the magnetic moment of the proton emerged as relevant. Calculation of the radius in the bound (circular) system associated with the required magnetic field strength for the ~3.41·10 -27 A·mX 2 discrepancy solved as the Compton wavelength of the electron. Applications of the approach allowed quantitative convergence between universal photon densities within 1 nm widths as well as integration of the energy from acceleration for estimated upper limits of resting photon masses with Planck’s constant. The results suggest that the physical and chemical properties that define biological systems, particularly the brain, reflect astronomical principles.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 20, 2; 160-165
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Cancer Cell Plasma Membrane Potentials As Energetic Equivalents to Astrophysical Properties
Autorzy:
Persinger, M. A.
Lafrenie, R. M.
Powiązania:
https://bibliotekanauki.pl/articles/411648.pdf
Data publikacji:
2014
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
kT boundary
magnetic energy
cancer cell
entropy
noise band
Hubble's parameter
Opis:
The primary physical and chemical parameters that define the hypopolarized plasma cell membrane of malignant (cancer) cells compared to non-malignant cells reflect universal characteristics. The median value for the resting membrane potential is the constant for the Nernst equation without reference to discrepancies in ion concentrations and is identical to Boltzmann energies at 37 °C. The threshold energy defining space-time converges with access to entropic processes that are reflected in the morphology of cancer cells and tumors. Slowing of growth in cancer cell lines but not normal cells following exposure to weak (~1 to 10 μT) patterned magnetic fields occurs when the energy induced within the cell corresponds to the energy equivalent of the hypopolarized membrane potential. The optimal temporal parameters for the efficacy of these fields can be derived from Hubble‟s parameter and the transform function for “noise” or “random” patterns within the system. Quantitative solutions and experimental data indicate that the cancer cell may be dominated by entropic process that can be attenuated or blocked by temporally-structured applied magnetic fields whose intensity matches the increment of energy associated with this threshold.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2014, 17, 1; 67-77
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies