Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "machine learning algorithm" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Improving Crop Yield Predictions in Morocco Using Machine Learning Algorithms
Autorzy:
Ed-Daoudi, Rachid
Alaoui, Altaf
Ettaki, Badia
Zerouaoui, Jamal
Powiązania:
https://bibliotekanauki.pl/articles/24202898.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
crop yield prediction
machine learning algorithm
statistical model
model evaluation
Opis:
In Morocco, agriculture is an important sector that contributes to the country’s economy and food security. Accurately predicting crop yields is crucial for farmers, policy makers, and other stakeholders to make informed decisions regarding resource allocation and food security. This paper investigates the potential of Machine Learning algorithms for improving the accuracy of crop yield predictions in Morocco. The study examines various factors that affect crop yields, including weather patterns, soil moisture levels, and rainfall, and how these factors can be incorporated into Machine Learning models. The performance of different algorithms, including Decision Trees, Random Forests, and Neural Networks, is evaluated and compared to traditional statistical models used for crop prediction. The study demonstrated that the Machine Learning algorithms outperformed the Statistical models in predicting crop yields. Specifically, the Machine Learning algorithms achieved mean squared error values between 0.10 and 0.23 and coefficient of determination values ranging from 0.78 to 0.90, while the Statistical models had mean squared error values ranging from 0.16 to 0.24 and coefficient of determination values ranging from 0.76 to 0.84. The Feed Forward Artificial Neural Network algorithm had the lowest mean squared error value (0.10) and the highest R² value (0.90), indicating that it performed the best among the three Machine Learning algorithms. These results suggest that Machine Learning algorithms can significantly improve the accuracy of crop yield predictions in Morocco, potentially leading to improved food security and optimized resource allocation for farmers.
Źródło:
Journal of Ecological Engineering; 2023, 24, 6; 392--400
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weighted accuracy algorithmic approach in counteracting fake news and disinformation
Algorytmiczne podejście do dokładności ważonej w przeciwdziałaniu fałszywym informacjom i dezinformacji
Autorzy:
Bonsu, K.O.
Powiązania:
https://bibliotekanauki.pl/articles/2048986.pdf
Data publikacji:
2021
Wydawca:
Akademia Bialska Nauk Stosowanych im. Jana Pawła II w Białej Podlaskiej
Tematy:
artificial intelligence
natural language processing
machine learning algorithm
disinformation
digital revolution
fake news
Opis:
Subject and purpose of work: Fake news and disinformation are polluting information environment. Hence, this paper proposes a methodology for fake news detection through the combined weighted accuracies of seven machine learning algorithms. Materials and methods: This paper uses natural language processing to analyze the text content of a list of news samples and then predicts whether they are FAKE or REAL. Results: Weighted accuracy algorithmic approach has been shown to reduce overfitting. It was revealed that the individual performance of the different algorithms improved after the data was extracted from the news outlet websites and 'quality' data was filtered by the constraint mechanism developed in the experiment. Conclusions: This model is different from the existing mechanisms in the sense that it automates the algorithm selection process and at the same time takes into account the performance of all the algorithms used, including the less performing ones, thereby increasing the mean accuracy of all the algorithm accuracies.
Źródło:
Economic and Regional Studies; 2021, 14, 1; 99-107
2083-3725
2451-182X
Pojawia się w:
Economic and Regional Studies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Effect of Dual Hyperparameter Optimization on Software Vulnerability Prediction Models
Autorzy:
Bassi, Deepali
Singh, Hardeep
Powiązania:
https://bibliotekanauki.pl/articles/2203949.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
software vulnerability
hyperparameter optimization
machine learning algorithm
data balancing techniques
data complexity measures
Opis:
Background: Prediction of software vulnerabilities is a major concern in the field of software security. Many researchers have worked to construct various software vulnerability prediction (SVP) models. The emerging machine learning domain aids in building effective SVP models. The employment of data balancing/resampling techniques and optimal hyperparameters can upgrade their performance. Previous research studies have shown the impact of hyperparameter optimization (HPO) on machine learning algorithms and data balancing techniques. Aim: The current study aims to analyze the impact of dual hyperparameter optimization on metrics-based SVP models. Method: This paper has proposed the methodology using the python framework Optuna that optimizes the hyperparameters for both machine learners and data balancing techniques. For the experimentation purpose, we have compared six combinations of five machine learners and five resampling techniques considering default parameters and optimized hyperparameters. Results: Additionally, the Wilcoxon signed-rank test with the Bonferroni correction method was implied, and observed that dual HPO performs better than HPO on learners and HPO on data balancers. Furthermore, the paper has assessed the impact of data complexity measures and concludes that HPO does not improve the performance of those datasets that exhibit high overlap. Conclusion: The experimental analysis unveils that dual HPO is 64% effective in enhancing the productivity of SVP models.
Źródło:
e-Informatica Software Engineering Journal; 2023, 17, 1; art. no. 230102
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine learning methods applied to sea level predictions in the upper part of a tidal estuary
Autorzy:
Guillou, N.
Chapalain, G.
Powiązania:
https://bibliotekanauki.pl/articles/2078822.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
multiple regression model
artificial neural network
multilayer perceptron
regression function
machine learning algorithm
sea level
Opis:
Sea levels variations in the upper part of estuary are traditionally approached by relying on refined numerical simulations with high computational cost. As an alternative efficient and rapid solution, we assessed here the performances of two types of machine learning algorithms: (i) multiple regression methods based on linear and polynomial regression functions, and (ii) an artificial neural network, the multilayer perceptron. These algorithms were applied to three-year observations of sea levels maxima during high tides in the city of Landerneau, in the upper part of the Elorn estuary (western Brittany, France). Four input variables were considered in relation to tidal and coastal surge effects on sea level: the French tidal coefficient, the atmospheric pressure, the wind velocity and the river discharge. Whereas a part of these input variables derived from large-scale models with coarse spatial resolutions, the different algorithms showed good performances in this local environment, thus being able to capture sea level temporal variations at semi-diurnal and spring-neap time scales. Predictions improved furthermore the assessment of inundation events based so far on the exploitation of observations or numerical simulations in the downstream part of the estuary. Results obtained exhibited finally the weak influences of wind and river discharges on inundation events.
Źródło:
Oceanologia; 2021, 63, 4; 531-544
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies