Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wafer" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Detection of Monocrystalline Silicon Wafer Defects Using Deep Transfer Learning
Autorzy:
Ganum, Adriana
Iskandar, D. N. F. Awang
Chin, Lim Phei
Fauzi, Ahmad Hadinata
Powiązania:
https://bibliotekanauki.pl/articles/2058502.pdf
Data publikacji:
2022
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
automated optical inspection
machine learning
neural network
wafer imperfection identification
Opis:
Defect detection is an important step in industrial production of monocrystalline silicon. Through the study of deep learning, this work proposes a framework for classifying monocrystalline silicon wafer defects using deep transfer learning (DTL). An existing pre-trained deep learning model was used as the starting point for building a new model. We studied the use of DTL and the potential adaptation of Mo bileNetV2 that was pre-trained using ImageNet for extracting monocrystalline silicon wafer defect features. This has led to speeding up the training process and to improving performance of the DTL-MobileNetV2 model in detecting and classifying six types of monocrystalline silicon wafer defects (crack, double contrast, hole, microcrack, saw-mark and stain). The process of training the DTL-MobileNetV2 model was optimized by relying on the dense block layer and global average pooling (GAP) method which had accelerated the convergence rate and improved generalization of the classification network. The monocrystalline silicon wafer defect classification technique relying on the DTL-MobileNetV2 model achieved the accuracy rate of 98.99% when evaluated against the testing set. This shows that DTL is an effective way of detecting different types of defects in monocrystalline silicon wafers, thus being suitable for minimizing misclassification and maximizing the overall production capacities.
Źródło:
Journal of Telecommunications and Information Technology; 2022, 1; 34--42
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A probabilistic approach for approximation of optical and opto-electronic properties of an opto-semiconductor wafer under consideration of measuring inaccuracy and model uncertainty
Autorzy:
Stroka, Stefan M.
Heumann, Christian
Suhrke, Fabian
Meindl, Kathrin
Powiązania:
https://bibliotekanauki.pl/articles/2204192.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Stowarzyszenie Elektryków Polskich
Tematy:
Gaussian process regression
machine learning
uncertainty quantification
photoluminescence
opto-semiconductor wafer measuring
Opis:
This paper presents a probabilistic machine learning approach to approximate wavelength values for unmeasured positions on an opto-semiconductor wafer after epitaxy. Insufficient information about optical and opto-electronic properties may lead to undetected specification violations and, consequently, to yield loss or may cause product quality issues. Collection of information is restricted because physical measuring points are expensive and in practice samples are only drawn from 120 specific positions. The purpose of the study is to reduce the risk of uncertainties caused by sampling and measuring inaccuracy and provide reliable approximations. Therefore, a Gaussian process regression is proposed which can determine a point estimation considering measuring inaccuracy and further quantify estimation uncertainty. For evaluation, the proposed method is compared with radial basis function interpolation using wavelength measurement data of 6-inch InGaN wafers. Approximations of these models are evaluated with the root mean square error. Gaussian process regression with radial basis function kernel reaches a root mean square error of 0.814 nm averaged over all wafers. A slight improvement to 0.798 nm could be achieved by using a more complex kernel combination. However, this also leads to a seven times higher computational time. The method further provides probabilistic intervals based on means and dispersions for approximated positions.
Źródło:
Opto-Electronics Review; 2023, 31, 2; art. no. e145863
1230-3402
Pojawia się w:
Opto-Electronics Review
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies