Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "software intelligence" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Applying Machine Learning to Software Fault Prediction
Autorzy:
Wójcicki, B.
Dabrowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/384105.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
classifier
fault prediction
machine learning
metric
Naïve Bayes
Python
quality
software intelligence
Opis:
Introduction: Software engineering continuously suffers from inadequate software testing. The automated prediction of possibly faulty fragments of source code allows developers to focus development efforts on fault-prone fragments first. Fault prediction has been a topic of many studies concentrating on C/C++ and Java programs, with little focus on such programming languages as Python. Objectives: In this study the authors want to verify whether the type of approach used in former fault prediction studies can be applied to Python. More precisely, the primary objective is conducting preliminary research using simple methods that would support (or contradict) the expectation that predicting faults in Python programs is also feasible. The secondary objective is establishing grounds for more thorough future research and publications, provided promising results are obtained during the preliminary research. Methods: It has been demonstrated that using machine learning techniques, it is possible to predict faults for C/C++ and Java projects with recall 0.71 and false positive rate 0.25. A similar approach was applied in order to find out if promising results can be obtained for Python projects. The working hypothesis is that choosing Python as a programming language does not significantly alter those results. A preliminary study is conducted and a basic machine learning technique is applied to a few sample Python projects. If these efforts succeed, it will indicate that the selected approach is worth pursuing as it is possible to obtain for Python results similar to the ones obtained for C/C++ and Java. However, if these efforts fail, it will indicate that the selected approach was not appropriate for the selected group of Python projects. Results: The research demonstrates experimental evidence that fault-prediction methods similar to those developed for C/C++ and Java programs can be successfully applied to Python programs, achieving recall up to 0.64 with false positive rate 0.23 (mean recall 0.53 with false positive rate 0.24). This indicates that more thorough research in this area is worth conducting. Conclusion: Having obtained promising results using this simple approach, the authors conclude that the research on predicting faults in Python programs using machine learning techniques is worth conducting, natural ways to enhance the future research being: using more sophisticated machine learning techniques, using additional Python-specific features and extended data sets.
Źródło:
e-Informatica Software Engineering Journal; 2018, 12, 1; 199-216
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczna inteligencja (SI) w badaniach lingwistycznych
Artificial Intelligence (AI) in Linguistic Research
Autorzy:
Sztuk, Alicja
Powiązania:
https://bibliotekanauki.pl/articles/555501.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Warszawski. Wydział Lingwistyki Stosowanej
Tematy:
artificial intelligence
machine learning
linguistic intelligence
linguistic research
intelligent tutoring system
linguistic smart software system for glottodidactics and translation intelligent
voice recognition
chatbot
terminotics
Opis:
The main purpose of the paper is both to present and to highlight the wide range of artificial intelligence appliance in linguistic research. I intend to define the so called ‘linguistic intelligence’ in the sense of machine learning, based mainly on artificial neural networks. Linguistic intelligent solutions seem to be not only up-to-date but also very promising in the area of developing and improving any intelligent linguistic tools, such as intelligent tutoring systems that are able to interact with human being, or the voice (speech) recognition systems that are able to receive, interpret (understand) and sometimes even carry out spoken commands. Finally, I intend to present the area of so called ‘terminotics’. The term refers to the meeting point of three interrelated disciplines: terminology, computational linguistics and linguistic engineering. This branch is also assisted by computer tools and new technologies based on artificial intelligence and machine learning. These (tools) are mainly designed for term extraction and corpora development but lately there are also some new possibilities to use these tools to increase the quality of terminology infrastructure as well.
Źródło:
Applied Linguistics Papers; 2018, 25/4; 159-174
2544-9354
Pojawia się w:
Applied Linguistics Papers
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial intelligence for software development : the present and the challenges for the future
Sztuczna inteligencja w wytwarzaniu oprogramowania : stan aktualny i wyzwania na przyszłość
Autorzy:
Korzeniowski, Łukasz
Goczyła, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/211290.pdf
Data publikacji:
2019
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
software development
artificial intelligence
machine learning
automated code generation
wytwarzanie oprogramowania
sztuczna inteligencja
uczenie maszynowe
automatyczne generowanie kodu
Opis:
Since the time when first CASE (Computer-Aided Software Engineering) methods and tools were developed, little has been done in the area of automated creation of code. CASE tools support a software engineer in creation the system structure, in defining interfaces and relationships between software modules and, after the code has been written, in performing testing tasks on different levels of detail. Writing code is still the task of a skilled human, which makes the whole software development a costly and error-prone process. It seems that recent advances in AI area, particularly in deep learning methods, may considerably improve the matters. The paper presents an extensive survey of recent work and achievements in this area reported in the literature, both from the theoretical branch of research and from engineer-oriented approaches. Then, some challenges for the future work are proposed, classified into Full AI, Assisted AI and Supplementary AI research fields.
Od czasu pojawienia się pierwszych metod i narzędzi CASE niewiele zrobiono w zakresie automatycznego wytwarzania oprogramowania. Narzędzia CASE wspierają deweloperów w tworzeniu struktury systemu, definiowaniu interfejsów i relacji między modułami oprogramowania oraz, po powstaniu kodu, w wykonywaniu zadań testowych na różnych poziomach szczegółowości. Pisanie kodu jest jednak nadal zadaniem wykwalifikowanego specjalisty, co powoduje, że cały proces wytwarzania oprogramowania jest kosztowny i podatny na błędy. Ostatnie postępy w obszarze sztucznej inteligencji, szczególnie w zakresie metod głębokiego uczenia maszynowego, mogą i powinny znacznie poprawić tę sytuację. W artykule przedstawiono przegląd dotychczasowych osiągnięć w tej dziedzinie, znanych z literatury przedmiotu, szczególnie w zakresie czysto teoretycznym, gdyż efekty inżynierskie znajdujące zastosowanie praktyczne są jak dotąd bardzo ograniczone. Następnie zaproponowano i opisano kilka kierunków przyszłych prac w tej dziedzinie, które zaklasyfikowano jako Full AI, Assisted AI i Supplementary AI, w kolejności wynikającej z oczekiwanego stopnia zautomatyzowania procesów wytwarzania oprogramowania.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2019, 68, 1; 15-32
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies