Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ship routing" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Prediction of ship's speed through ground using the previous voyage's drift speed
Autorzy:
Yamane, D.
Kano, T.
Powiązania:
https://bibliotekanauki.pl/articles/24201461.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
machine learning
weather routing
ship's speed estimation
drift speed
algorithm
route planning
tidal current
Opis:
In recent years, 'weather routing' has been attracting increasing attention as a means of reducing costs and environmental impact. In order to achieve high-quality weather routing, it is important to accurately predict the ship's speed through ground during a voyage from ship control variables and predicted data on weather and sea conditions. Because sea condition forecasts are difficult to produce in-house, external data is often used, but there is a problem that the accuracy of sea condition forecasts is not sufficient and it is impossible to improve the accuracy of the forecasts because the data is external. In this study, we propose a machine learning method for predicting speed through ground by considering the actual values of the previous voyage’s drift speed for ships that regularly operate on the same route, such as ferries. Experimental results showed that this method improves the prediction performance of ship’s speed through ground.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2023, 17, 1; 129--137
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Real-time training algorithms in neuroevolutionary navigational decision support system
Algorytmy szkolenia w czasie rzeczywistym w neuroewolucyjnym systemie wsparcia podejmowania decyzji nawigacyjnych
Autorzy:
Łącki, M.
Powiązania:
https://bibliotekanauki.pl/articles/222133.pdf
Data publikacji:
2012
Wydawca:
Akademia Marynarki Wojennej. Wydział Dowodzenia i Operacji Morskich
Tematy:
sztuczna inteligencja
ewolucyjne sieci neuronowe
nawigacja morska
wyznaczanie tras
manewrowanie
sterowanie bezpieczeństwem okrętu
symulacja komputerowa
machine learning
artificial intelligence
evolutionary neural networks
marine navigation
routing and manoeuvring
safe ship control
computer simulation
Opis:
The paper presents the idea of using advanced machine learning algorithms to aid decision making in ship manoeuvring in real time. Evolutionary neural networks are used in this purpose. In the simulated model of manoeuvring ship a helmsman is treated as an individual in population of competitive helmsmen, which through environmental sensing and evolution processes learn how to navigate safely through restricted waters.
Artykuł przedstawia koncepcję wykorzystania zaawansowanych algorytmów uczenia się maszyn dla wsparcia podejmowania decyzji manewrowania okrętem w czasie rzeczywistym. Do tego celu wykorzystywane są ewolucyjne sieci neuronowe. W symulowanym modelu manewrowania okrętem sternik jest traktowany jako jednostka w populacji konkurencyjnych sterników, którzy poprzez wyczuwanie środowiskowe i procesy ewolucyjne uczą się jak prowadzić nawigację bezpiecznie po ograniczonych akwenach.
Źródło:
Zeszyty Naukowe Akademii Marynarki Wojennej; 2012, R. 53 nr 4 (191), 4 (191); 93-104
0860-889X
Pojawia się w:
Zeszyty Naukowe Akademii Marynarki Wojennej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies