Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "parkinson’s disease" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Speech and tremor tester - monitoring of neurodegenerative diseases using smartphone technology
Tester mowy i drżenia - monitorowanie przebiegu chorób neurodegeneracyjnych z wykorzystaniem smartfona
Autorzy:
Chronowski, Maurycy
Kłaczyński, Maciej
Dec-Ćwiek, Małgorzata
Porębska, Karolina
Sawczyńska, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/328555.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
Parkinson’s disease
speech analysis
hand tremor
smartphone
diagnostics
machine learning
choroba Parkinsona
analiza mowy
drżenie
smartfon
diagnostyka
uczenie maszynowe
Opis:
One of the most frequently diagnosed neurodegenerative disorders, along with Alzheimer’s disease, is Parkinson’s disease. It is a slowly progressing disease of the central nervous system that affects parts of the brain which are responsible for one’s motor functions. Despite the frequency of its occurrence among the elderly population, there has not yet been established a universal approach towards its certain diagnostics ante mortem. The study presents a pilot experiment regarding the assessment of the usefulness of simultaneous processing and analysis of speech signal and hand tremor accelerations for patient’s screening and monitoring of the progress in healing, using the data acquired with a mid-range Android smartphone. During the study, a mobile device of this kind was used to record the patients of the Department of Neurology, University Hospital of the Jagiellonian University in Kraków and a control group of healthy persons over the age of 50. The samples were then analysed and an attempt towards classification was made using statistical methods and machine learning techniques (PCA, SVM, LDA). It was shown that even for a limited population, the classifier reaches about 85% accuracy. Another topic discussed in the study is the possibility of implementing a fully automated mobile system for the monitoring of the disease’s progression. Propositions of further research were also drawn.
Jednym z najczęściej diagnozowanych zaburzeń neurodegeneracyjnych, obok choroby Alzheimera, jest choroba Parkinsona. To wolno postępująca choroba zwyrodnieniowa ośrodkowego układu nerwowego, która zajmuje obszary mózgu odpowiedzialne za motorykę. Pomimo powszechności choroby wśród osób starszych, do tej pory nie została opisana uniwersalna metoda jej pewnego zdiagnozowania. Praca przedstawia pilotażowe badanie dotyczące określenia przydatności i możliwości wykorzystania metod jednoczesnego przetwarzania i analizy sygnału mowy oraz sygnału przyspieszenia drgań kończyny górnej w kontekście badań przesiewowych lub obiektywnego monitorowania postępu leczenia chorób neurodegeneracyjnych, z wykorzystaniem danych pozyskanych za pomocą średniej klasy smartfonu z systemem Android. W ramach badania wykonano za pomocą urządzenia mobilnego nagrania pacjentów Oddziału Neurologii Szpitala Uniwersyteckiego w Krakowie ze zdiagnozowaną chorobą Parkinsona oraz osób zdrowych powyżej 50 roku życia. Próbki poddano analizie i wstępnej klasyfikacji z wykorzystaniem metod statystycznych oraz technik uczenia maszynowego (PCA, SVM, LDA). Pokazano, że skuteczność klasyfikacji już dla niewielkiej populacji sięga około 85%. W pracy omówiono również możliwość implementacji w pełni automatycznego systemu mobilnego monitorowania przebiegu choroby, a także przedstawiono propozycję dalszych badań w tym kierunku.
Źródło:
Diagnostyka; 2020, 21, 2; 31-39
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of Parkinson’s disease and other neurological disorders using voice features extraction and reduction techniques
Klasyfikacja choroby Parkinsona i innych zaburzeń neurologicznych z wykorzystaniem ekstrakcji cech głosowych i technik redukcji
Autorzy:
Majdoubi, Oumaima
Benba, Achraf
Hammouch, Ahmed
Powiązania:
https://bibliotekanauki.pl/articles/27315435.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
voice analysis
Parkinson’s disease
MFCC
PCA
naive Bayes kernel
machine learning
analiza głosu
choroba Parkinsona
naiwne jądro bayesowskie
uczenie maszynowe
Opis:
This study aimed to differentiate individuals with Parkinson's disease (PD) from those with other neurological disorders (ND) by analyzing voice samples, considering the association between voice disorders and PD. Voice samples were collected from 76 participants using different recording devices and conditions, with participants instructed to sustain the vowel /a/ comfortably. PRAAT software was employed to extract features including autocorrelation (AC), cross-correlation (CC), and Mel frequency cepstral coefficients (MFCC) from the voice samples. Principal component analysis (PCA) was utilized to reduce the dimensionality of the features. Classification Tree (CT), Logistic Regression, Naive Bayes (NB), Support Vector Machines (SVM), and Ensemble methods were employed as supervised machine learning techniques for classification. Each method provided distinct strengths and characteristics, facilitating a comprehensive evaluation of their effectiveness in distinguishing PD patients from individuals with other neurological disorders. The Naive Bayes kernel, using seven PCA-derived components, achieved the highest accuracy rate of 86.84% among the tested classification methods. It is worth noting that classifier performance may vary based on the dataset and specific characteristics of the voice samples. In conclusion, this study demonstrated the potential of voice analysis as a diagnostic tool for distinguishing PD patients from individuals with other neurological disorders. By employing a variety of voice analysis techniques and utilizing different machine learning algorithms, including Classification Tree, Logistic Regression, Naive Bayes, Support Vector Machines, and Ensemble methods, a notable accuracy rate was attained. However, further research and validation using larger datasets are required to consolidate and generalize these findings for future clinical applications.
Przedstawione badanie miało na celu różnicowanie osób z chorobą Parkinsona (PD) od osób z innymi zaburzeniami neurologicznymi poprzez analizę próbek głosowych, biorąc pod uwagę związek między zaburzeniami głosu a PD. Próbki głosowe zostały zebrane od 76 uczestników przy użyciu różnych urządzeń i warunków nagrywania, a uczestnicy byli instruowani, aby wydłużyć samogłoskę /a/ w wygodnym tempie. Oprogramowanie PRAAT zostało zastosowane do ekstrakcji cech, takich jak autokorelacja (AC), krzyżowa korelacja (CC) i współczynniki cepstralne Mel (MFCC) z próbek głosowych. Analiza składowych głównych (PCA) została wykorzystana w celu zmniejszenia wymiarowości cech. Jako techniki nadzorowanego uczenia maszynowego wykorzystano drzewa decyzyjne (CT), regresję logistyczną, naiwny klasyfikator Bayesa (NB), maszyny wektorów nośnych (SVM) oraz metody zespołowe. Każda z tych metod posiadała swoje unikalne mocne strony i charakterystyki, umożliwiając kompleksową ocenę ich skuteczności w rozróżnianiu pacjentów z PD od osób z innymi zaburzeniami neurologicznymi. Naiwny klasyfikator Bayesa, wykorzystujący siedem składowych PCA, osiągnął najwyższy wskaźnik dokładności na poziomie 86,84% wśród przetestowanych metod klasyfikacji. Należy jednak zauważyć, że wydajność klasyfikatora może się różnić w zależności od zbioru danych i konkretnych cech próbek głosowych. Podsumowując, to badanie wykazało potencjał analizy głosu jako narzędzia diagnostycznego do rozróżniania pacjentów z PD od osób z innymi zaburzeniami neurologicznymi. Poprzez zastosowanie różnych technik analizy głosu i wykorzystanie różnych algorytmów uczenia maszynowego, takich jak drzewa decyzyjne, regresja logistyczna, naiwny klasyfikator Bayesa, maszyny wektorów nośnych i metody zespołowe, osiągnięto znaczący poziom dokładności. Niemniej jednak, konieczne są dalsze badania i walidacja na większych zbiorach danych w celu skonsolidowania i uogólnienia tych wyników dla przyszłych zastosowań klinicznych.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 3; 16--22
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applicability of artificial intelligence in smart healthcare systems for automatic detection of Parkinson’s Disease
Autorzy:
Pallathadka, Harikumar
Padminivalli V., S.J.R.K.
Vasavi, M.
Nancy, P.
Naved, Mohd
Kumar, Harish
Ray, Samrat
Powiązania:
https://bibliotekanauki.pl/articles/38709253.pdf
Data publikacji:
2024
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
Parkinson’s disease
detection
machine learning
relief algorithm
LDA algorithm
SVM-RBF
accuracy
sensitivity
specificity
choroba Parkinsona
wykrywanie
nauczanie maszynowe
algorytm ulgi
Algorytm LDA
dokładność
wrażliwość
specyficzność
Opis:
Parkinson’s disease is associated with memory loss, anxiety, and depression in the brain. Problems such as poor balance and difficulty during walking can be observed in addition to symptoms of impaired posture and rigidity. The field dedicated to making computers capable of learning autonomously, without having to be explicitly programmed, is known as machine learning. An approach to the diagnosis of Parkinson’s disease, which is based on artificial intelligence, is discussed in this article. The input for this system is provided through photographic examples of Parkinson’s disease patient handwriting. Received photos are preprocessed using the relief feature option to begin the process. This is helpful in the process of selecting characteristics for the identification of Parkinson’s disease. After that, the linear discriminant analysis (LDA) algorithm is employed to reduce the dimensions, bringing down the total number of dimensions that are present in the input data. The photos are then classified via radial basis function-support vector machine (SVM-RBF), k-nearest neighbors (KNN), and naive Bayes algorithms, respectively.
Źródło:
Computer Assisted Methods in Engineering and Science; 2024, 31, 2; 175-185
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies