Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "learning theory" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Application of machine learning and rough set theory in lean maintenance decision support system development
Autorzy:
Antosz, Katarzyna
Jasiulewicz-Kaczmarek, Małgorzata
Paśko, Łukasz
Zhang, Chao
Wang, Shaoping
Powiązania:
https://bibliotekanauki.pl/articles/2038009.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
lean maintenance
availability
machine learning
decision trees
rough set theory
Opis:
Lean maintenance concept is crucial to increase the reliability and availability of maintenance equipment in the manufacturing companies. Due the elimination of losses in maintenance processes this concept reduce the number of unplanned downtime and unexpected failures, simultaneously influence a company’s operational and economic performance. Despite the widespread use of lean maintenance, there is no structured approach to support the choice of methods and tools used for the maintenance function improvement. Therefore, in this paper by using machine learning methods and rough set theory a new approach was proposed. This approach supports the decision makers in the selection of methods and tools for the effective implementation of Lean Maintenance.
Źródło:
Eksploatacja i Niezawodność; 2021, 23, 4; 695-708
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Specialized, MSE-optimal m-estimators of the rule probability especially suitable for machine learning
Autorzy:
Piegat, A.
Landowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/205508.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
machine learning
rule probability
probability estimation
m-estimators
decision trees
rough set theory
Opis:
The paper presents an improved sample based rule- probability estimation that is an important indicator of the rule quality and credibility in systems of machine learning. It concerns rules obtained, e.g., with the use of decision trees and rough set theory. Particular rules are frequently supported only by a small or very small number of data pieces. The rule probability is mostly investigated with the use of global estimators such as the frequency-, the Laplace-, or the m-estimator constructed for the full probability interval [0,1]. The paper shows that precision of the rule probability estimation can be considerably increased by the use of m-estimators which are specialized for the interval [phmin, phmax] given by the problem expert. The paper also presents a new interpretation of the m-estimator parameters that can be optimized in the estimators.
Źródło:
Control and Cybernetics; 2014, 43, 1; 133-160
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Discretization of data using Boolean transformations and information theory based evaluation criteria
Autorzy:
Jankowski, C.
Reda, D.
Mańkowski, M.
Borowik, G.
Powiązania:
https://bibliotekanauki.pl/articles/200750.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
machine learning
discretization
discernibility function
logic minimization
information theory
entropy
nauczanie maszynowe
dyskretyzacja
minimalizacja funkcji logicznych
teoria informacji
entropia
Opis:
Discretization is one of the most important parts of decision table preprocessing. Transforming continuous values of attributes into discrete intervals influences further analysis using data mining methods. In particular, the accuracy of generated predictions is highly dependent on the quality of discretization. The paper contains a description of three new heuristic algorithms for discretization of numeric data, based on Boolean reasoning. Additionally, an entropy-based evaluation of discretization is introduced to compare the results of the proposed algorithms with the results of leading university software for data analysis. Considering the discretization as a data compression method, the average compression ratio achieved for databases examined in the paper is 8.02 while maintaining the consistency of databases at 100%.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2015, 63, 4; 923-932
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
O wiele więcej niż Google Translate, czyli komputerowe przetwarzanie języka naturalnego (NLP) w translatoryce i translatologii
Far Beyond Google Translate: Natural Language Processing (NLP) in Translation and Translatology
Autorzy:
Okulska, Inez
Powiązania:
https://bibliotekanauki.pl/articles/912393.pdf
Data publikacji:
2020-06-15
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Tematy:
literary translation
machine learning
big data
natural language processing
theory of translation
computational linguistics
machine translation
przekład literacki
teoria przekładu
przetwarzanie języka naturalnego
lingwistyka komputerowa
przekład maszynowy
uczenie maszynowe
Opis:
Przewrotna jest rola postępu – im więcej technologicznego rozwoju, tym większy udział człowieka – w koncepcji, formułowaniu zadań, interpretacji wyników, nadzorze i korekcie. Hierarchia jest zachowana, człowiek wciąż nieodzowny, ale to nie znaczy, że w pewnych obszarach maszynowy potencjał rzeczywiście nie przewyższa ludzkiego i że nie warto z tej przewagi skorzystać. Przetwarzanie języka naturalnego (NLP) to dziedzina niemłoda, ale w ostatnich latach dzięki rozkwitowi metod uczenia głębokiego (deep learning), mody na maszynowe wnioskowanie (data/knowledge mining) czy nowym sprzętowym interfejsom (m.in. zaawansowane rozpoznawanie obrazu) komputerowa analiza tekstu przeżywa istny renesans. W odniesieniu do translacji przyjęło się mówić i pisać głównie o coraz doskonalszych lub właśnie zupełnie niemożliwych algorytmach dla kolejnych par języków czy coraz większej precyzji samego tłumaczenia. Niniejszy artykuł przedstawia natomiast nieco szersze spektrum procesu tłumaczenia i przygląda się elementom przekładowi towarzyszącym (jak choćby krytyka), w których wykorzystanie metod NLP możeprzynieść nowe, ciekawe wyniki. Wyniki, których ze względu na ograniczoną moc obliczeniową człowiek nie jest w stanie osiągnąć. Omówione zostały takie aspekty jak wektorowa reprezentacja języka, stylometria i jej zastosowania czy analiza wielkich zbiorów danych – wszystko to na potrzeby szeroko rozumianychtranslacji i translatologii.
The more technological development, the greater the participation of the human – in formulating tasks and problems, supervising and improving automated processes and interpreting their outcomes. The hierarchy is preserved, humans are still indispensable, but it does not mean that in certain areas of machinery the potential does not really exceed that of the human and that this advantage is not worth exploiting. Natural language processing (NLP) is not a young field, but in recent years, thanks to the thrive of deep learning methods, data and knowledge mining or new human-machine interfaces, computer text analysis is experiencing a real renaissance. As far as translation is concerned, it is mostly algorithms for machine translation that are being discussed. This article, on the other hand, presents a slightly broader spectrum of the translation process and looks at the accompanying elements (such as criticism) in which the use of NLP methods may bring new and interesting results. Results which, due to limited computing power, humans are unable to achieve. The discussion in the paper covers such aspects as the vector representation of language,stylometry and its application, or the analysis of large data sets – all for the purposes of translation and translatology.
Źródło:
Porównania; 2020, 26, 1; 283-297
1733-165X
Pojawia się w:
Porównania
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies