Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "learning disorders" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Comparative Analysis of Classifiers for the Assessment of Respiratory Disorders Using Speech Parameters
Autorzy:
Shrivastava, Poonam
Tripathi, Neeta
Singh, Bikesh Kumar
Dewangan, Bhupesh Kumar
Powiązania:
https://bibliotekanauki.pl/articles/31339918.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
healthy speech
affected speech
machine learning
classification techniques
respiratory disorders
speech analysis
Opis:
Non-invasive techniques for the assessment of respiratory disorders have gained increased importance in recent years due to the complexity of conventional methods. In the assessment of respiratory disorders, machine learning may play a very essential role. Respiratory disorders lead to variation in the production of speech as both go hand in hand. Thus, speech analysis can be a useful means for the pre-diagnosis of respiratory disorders. This article aims to develop a machine learning approach to differentiate healthy speech from speech corresponding to different respiratory disorders (affected). Thus, in the present work, a set of 15 relevant and efficient features were extracted from acquired data, and classification was done using different classifiers for healthy and affected speech. To assess the performance of different classifiers, accuracy, specificity (Sp), sensitivity (Se), and area under the receiver operating characteristic curve (AUC) was used by applying both multi-fold cross-validation methods (5-fold and 10-fold) and the holdout method. Out of the studied classifiers, decision tree, support vector machine (SVM), and k-nearest neighbor (KNN) were found more appropriate in providing correct assessment clinically while considering 15 features as well as three significant features (Se > 89%, Sp > 89%, AUC> 82%, and accuracy > 99%). The conclusion was that the proposed classifiers may provide an aid in the simple assessment of respiratory disorders utilising speech parameters with high efficiency. In the future, the proposed approach can be evaluated for the detection of specific respiratory disorders such as asthma, COPD, etc.
Źródło:
Archives of Acoustics; 2023, 48, 1; 13-24
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel framework for fetal nuchal translucency abnormality detection using hybrid maxpool matrix histogram analysis
Autorzy:
Verma, Deept
Agrawal, Shweta
Powiązania:
https://bibliotekanauki.pl/articles/38703226.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
nuchal translucency
genetic disorders
hybrid maxpool matrix histogram analysis
pregnant women
machine learning
przezierność karku
zaburzenia genetyczne
analiza histogramu hybrydowej macierzy Maxpool
kobiety w ciąży
nauczanie maszynowe
Opis:
Birth defects affect 1 to 3 percent of the population and are mostly detected in pregnantwomen through double, triple, and quadruple testing. Ultrasonography helps to discoverand define such anomalies in fetuses. Ultrasound pictures of nuchal translucency (NT)are routinely used to detect genetic disorders in fetuses. The NT area lacks identifiablelocal behaviors and detection algorithms are required to classify the fetal head. On theother hand, explicit identification of other body parts comes at a higher cost in termsof annotations, implementation, and analysis. In circumstances of ambiguous head placement or non-standard head-NT relationships, it may potentially cause cascading errors.In this research work, a linear contour size filter is used to decrease noise from the image,and then the picture is scaled. Then, a novel hybrid maxpool matrix histogram analysis (HMMHA) is proposed to enhance the initiation and progression. The training andassessment were conducted using a dataset of 33 ultrasound pictures. Extensive testingshows that the direct method reliably identifies and measures NT. The suggested modelmay assist doctors in making decisions about pregnancies with fetal growth restriction,particularly for patients who have nuchal translucency or congenital anomalies and donot require induced labor due to these abnormalities. The performance of the proposedtechnique is analyzed in terms of error rate, sensitivity, Matthews correlation coefficient(MCC), accuracy, precision, recall, and F1-score. The error rate of the proposed model is28.21% and it is found to be better when compared with the conventional approaches. Finally, the error prediction is compared with the existing models obtained from the medicaldataset of pregnant women to identify fetal abnormality positions.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 3; 277-290
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
AI-supported reasoning in physiotherapy
Wnioskowanie w fizjoterapii wspierane sztuczną inteligencją
Autorzy:
Mikołajewski, Dariusz
Mikołajewska, Emilia
Powiązania:
https://bibliotekanauki.pl/articles/41203435.pdf
Data publikacji:
2024
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
artificial intelligence
machine learning
clinical reasoning
clinical decision support system
interview
musculoskeletal pain disorders
physiotherapy
usability
recommender system
self-management
mHealth
sztuczna inteligencja
uczenie maszynowe
wnioskowanie kliniczne
system wspomagania decyzji klinicznych
wywiad
zaburzenia bólowe układu mięśniowo-szkieletowego
fizjoterapia
użyteczność
system rekomendacji
samokontrola
mZdrowie
Opis:
Artificial intelligence (AI)-based clinical reasoning support systems in physiotherapy, and in particular data-driven (machine learning) systems, can be useful in making and reviewing decisions regarding functional diagnosis and formulating/maintaining/modifying a rehabilitation programme. The aim of this article is to explore the extent to which the opportunities offered by AI-based systems for clinical reasoning in physiotherapy have been exploited and where the potential for their further stimulated development lies.
Systemy wspomagania wnioskowania klinicznego w fizjoterapii oparte na sztucznej inteligencji, a w szczególności na danych (uczenie maszynowe), mogą być przydatne w podejmowaniu i weryfikacji decyzji dotyczących diagnostyki funkcjonalnej ora formułowania/utrzymywania/modyfikowania programu rehabilitacji. Celem niniejszego artykułu jest zbadanie, w jakim stopniu możliwości oferowane przez systemy oparte na sztucznej inteligencji w zakresie rozumowania klinicznego w fizjoterapii zostały wykorzystane i gdzie leży potencjał ich dalszego stymulowanego rozwoju.
Źródło:
Studia i Materiały Informatyki Stosowanej; 2024, 16, 2; 21-27
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies