Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "artificial" wg kryterium: Temat


Tytuł:
Ataki na urządzenia mobilne i metody ich wykrywania
Autorzy:
Niewiadomska-Szynkiewicz, Ewa
Litka, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/13947024.pdf
Data publikacji:
2023-02-20
Wydawca:
Akademia Sztuki Wojennej
Tematy:
cybersecurity
cyberattack detection
mobile applications
artificial
intelligence
machine learning
artificial neural networks
deep learning
Opis:
Individual protection of autonomous systems using simple analysis of transmitted messages is unfortunately becoming insufficient. There is a clear need for new solutions using data from multiple sources, integrating various methods, mechanisms and algorithms, including Big Data processing and data classification techniques using artificial intelligence methods. The quantity, quality, reliability and timeliness of data and information about the network situation, as well as the speed of its processing, determine the effectiveness of protection. The paper presents examples of the application of various artificial intelligence techniques for detecting attacks on ICT systems. Attention is focused on the application of deep learning methods for the detection of malicious applications installed on mobile devices. The effectiveness of the presented solutions was confirmed by numerous simulation experiments conducted on real data. Promising results were obtained.
Źródło:
Cybersecurity and Law; 2023, 9, 1; 95-107
2658-1493
Pojawia się w:
Cybersecurity and Law
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Francesco Marconi (2020). Newsmakers: Artificial Intelligence And The Future Of Journalism
Autorzy:
Baranowski, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/2042901.pdf
Data publikacji:
2021-12-28
Wydawca:
Polskie Towarzystwo Komunikacji Społecznej
Tematy:
journalism studies
technology
artificial intelligence
machine learning
Opis:
This is the review of the book by Francesco Marconi "Newsmakers: Artificial Intelligence and the Future of Journalism."
Źródło:
Central European Journal of Communication; 2021, 14, 2(29); 357-360
1899-5101
Pojawia się w:
Central European Journal of Communication
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
From Linear Classifier to Convolutional Neural Network for Hand Pose Recognition
Autorzy:
Rościszewski, P.
Powiązania:
https://bibliotekanauki.pl/articles/305776.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
machine learning
artificial neural networks
computer vision
Opis:
Recently gathered image datasets and new capabilities of high performance computing systems allowed developing new artificial neural network models and training algorithms. Using the new machine learning models, computer vision tasks can be accomplished based on the raw values of image pixels, instead of specific features. The principle of operation of deep artificial neural networks is more and more resembling of what we believe to be happening in the human visual cortex. In this paper we build up an understanding of convolutional neural networks through investigating supervised machine learning methods suchas K-Nearest Neighbors, linear classifiers and fully connected neural networks. We provide examples and accuracy results based on our implementation aimed for the problem of hand pose recognition.
Źródło:
Computer Science; 2017, 18 (4); 341-356
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczna inteligencja w odczarowanym świecie
Artificial intelligence in the disenchanted world
Autorzy:
Koronacki, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/41309731.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Instytut Filozofii i Socjologii PAN
Tematy:
artificial intelligence
strong artificial intelligence
machine learning
disenchanted world
sztuczna inteligencja
silna sztuczna inteligencja
uczenie maszynowe
świat odczarowany
Opis:
Niniejsze rozważanie jest pisane przez inżyniera. W pierwszych dwóch punktach artykułu znajdujemy narysowany kilkoma kreskami szkic metodologicznych podstaw sztucznej inteligencji (SI) i czym dziś SI jest. W dalszych punktach zasygnalizujemy kształt najbliższej przyszłości SI, umieścimy SI w kontekście kultury, odnotujemy fenomen tzw. silnej sztucznej inteligencji i zakończymy całość paroma uwagami.
This is a modest endeavour written from an engineering perspective by a nonphilosopher to set things straight if somewhat roughly: What does artificial intelligence boil down to? What are its merits and why some dangers may stem from its development in this time of confusion when, to quote Rémi Brague: “From the point of view of technology, man appears as outdated, or at least superfluous”?
Źródło:
Filozofia i Nauka; 2020, 8, 1; 9-30
2300-4711
2545-1936
Pojawia się w:
Filozofia i Nauka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczna inteligencja w problematyce modeli oceny ryzyka w instytucjach finansowych z perspektywy prawno-regulacyjnej
Artifical intelligence in problems of risk assessment models in financial institutions from a legal and regulatory perspective
Autorzy:
Nowakowski, Michał
Waliszewski, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2033957.pdf
Data publikacji:
2022-03-30
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
risk assessment models
artificial intelligence
bank
machine learning
Opis:
Purpose of the article / hypothesis: This article aims to verify the need to introduce additional legal and regulatory requirements in relation to the models used in banks, including, in particular, risk assessment models. At the same time, the article analyzes the need for possible introduction of sector-specific guidelines, or the need to include the above-mentioned models in the classification of high-risk artificial intelligence systems, referred to in the draft EU regulation on artificial intelligence. Methodology: The article is based on an analysis of the available literature on the subject, legal acts as well as regulations and standards developed both at the local and international level. Research results / results: The issue of the application of models in the financial sector, mainly banking, is of significant importance from the perspective of the regulator and supervisor. Quality, compliance with the regulations, but also efficiency and effective supervision may constitute the (instability) of a given financial institution, the instability of which may be a component – at least potentially – of systemic risk. Banks commonly use internal models that generally allow the calculation of capital requirements to cover specific risks in a bank’s business, such as credit risk or market risk. Internal models have been evolving for years and are undoubtedly becoming more and more accurate (they predict with a greater probability the occurrence of certain events), although they are still only certain assumptions that reality can verify, as evidenced by financial crises that have already occurred in the past as well as failures of banks considered to be stable. At the same time, the development of new technologies, in particular the so-called artificial intelligence makes institutions more and more willing to use various models, e.g. machine learning, to support these models and obtain theoretically better results. The European Union, but also other jurisdictions are considering or already introducing specific legal and regulatory solutions that are to introduce clear rules related to the use of certain artificial intelligence systems, including those used by financial institutions. As a result, institutions – already burdened with significant regulatory requirements, may soon be obliged to go through another "health path" of a legal and regulatory compliance nature.
Źródło:
Finanse i Prawo Finansowe; 2022, 1, 33; 119-141
2391-6478
2353-5601
Pojawia się w:
Finanse i Prawo Finansowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial neural network (ANN) modelling to estimate bubble size from macroscopic image and object features
Autorzy:
Vinnett, Luis
León, Roberto
Mesa, Diego
Powiązania:
https://bibliotekanauki.pl/articles/29552038.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
machine learning
artificial neural network
flotation
bubble size
Sauter diameter
Opis:
Bubble size measurements in aerated systems such as froth flotation cells are critical for controlling gas dispersion. Commonly, bubbles are measured by obtaining representative photographs, which are then analyzed using segmentation and identification software tools. Recent developments have focused on enhancing these segmentation tools. However, the main challenges around complex bubble cluster segmentation remain unresolved, while the tools to tackle these challenges have become increasingly complex and computationally expensive. In this work, we propose an alternative solution, circumventing the need for image segmentation and bubble identification. An Artificial Neural Network (ANN) was trained to estimate the Sauter mean bubble size (D32) based on macroscopic image features obtained with simple and inexpensive image analysis. The results showed excellent prediction accuracy, with a correlation coefficient, R, over 0.998 in the testing stage, and without bias in its error distribution. This machine learning tool paves the way for robust and fast estimation of bubble size under complex bubble images, without the need of image segmentation.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 5; art. no. 185759
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozwój sztucznej inteligencji i jej wpływ na rynek finansowy
The Development of Artificial Intelligence and its Impact on the Financial Market
Autorzy:
Tomaszek, Arkadiusz
Powiązania:
https://bibliotekanauki.pl/articles/36095177.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
financial market
artificial intelligence
machine learning
opportunities and threats
digitization
Opis:
The purpose of this article. The aim of the article is to analyze selected issues related to artificial intelligence and its development, particularly its impact on the financial market, taking into account the opportunities and threats that artificial intelligence and its areas, such as machine learning or deep learning, pose to financial market participants. The research methods utilized in the study were used to evaluate the phenomenon on a macroeconomic scale. Methodology. The results of the research were based on the analysis of secondary data, such as source literature – both domestic and foreign, systems analysis of European Union legal acts, as well as the review of reports on the use of AI within the financial market. The paper is theoretical. The result of the research. The development of artificial intelligence in financial markets may provide an opportunity to gain competitive advantage, especially for financial market participants who aptly implement AI-based solutions in its initial phase. However, this entails both benefits and risks, the possible occurrence of which depends on many other factors.
Źródło:
Finanse i Prawo Finansowe; 2022, 2 (Numer Specjalny); 109-119
2391-6478
2353-5601
Pojawia się w:
Finanse i Prawo Finansowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial Intelligence and Human Talent in Decision Making in the Sphere of Marketing in an Enterprise
Sztuczna inteligencja i ludzki talent w podejmowaniu decyzji z zakresu marketingu w przedsiębiorstwie
Autorzy:
Sobocińska, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/1925924.pdf
Data publikacji:
2021-04-09
Wydawca:
Uniwersytet Warszawski. Wydawnictwo Naukowe Wydziału Zarządzania
Tematy:
talent
artificial intelligence
machine learning
marketing
sztuczna inteligencja
uczenie maszynowe
Opis:
Purpose: The analysis of the content of publications concerning decision-making processes in an enterprise indicates that one of the tasks of modern management is to identify effective solutions based on the synergy of human and technological resources that support decision-making processes. This also applies to marketing, which is subject to virtualization related both to its concept and instruments, as well as marketing activities. The purpose of the paper is to show the role of artificial intelligence and human talent in decision making in the field of marketing in an enterprise. Design/methodology/approach: Critical literature review; the research procedure that is based on the review of the literature is focused on formulating the answers to the following questions: – What factors determine the effective implementation of artificial intelligence as a technology supporting decision-making processes in the sphere of marketing in enterprises? – What are the identified models of application of artificial intelligence and human talent in making decisions in enterprises? Findings: The use of the opportunities offered by artificial intelligence in supporting marketing decisions brings many benefits, but it also requires overcoming mental and cultural barriers. It should be emphasized that relying on artificial intelligence in decision-making processes does not mean eliminating people, especially the talented ones, because it is the employee who can revise the decision-making criteria or state that the algorithm on the basis of which decisions are made in the company is outdated. Research limitations/implications: Empirical verification of the proposed model would allow for identifying the role performed by talented employees and algorithms in decision-making processes in the era of development of innovative IT solutions along with determination of the hierarchy of factors stimulating these processes. Originality/value: Proposing a model of determinants and types of solutions that allow for effectively combining human resources described as talent and artificial intelligence in making decisions in the field of marketing in enterprises is the result of the considerations provided in the paper.
Cel: analiza treści publikacji z zakresu procesów podejmowania decyzji w przedsiębiorstwie wskazuje, że jednym z zadań współczesnego zarządzania jest identyfikowanie efektywnych, bazujących na synergii zasobów ludzkich i technologicznych, rozwiązań stanowiących wsparcie w procesach decyzyjnych. Dotyczy to także marketingu, który podlega wirtualizacji odnoszonej zarówno do jego koncepcji, jak i instrumentów oraz działań marketingowych. Celem artykułu jest ukazanie roli sztucznej inteligencji i ludzkiego talentu w procesach podejmowania decyzji z zakresu marketingu w przedsiębiorstwie. Metodologia: krytyczny przegląd literatury; bazujące na kwerendzie literatury postępowanie badawcze ukierunkowane zostało na sformułowanie odpowiedzi na następujące pytania: – jakie czynniki warunkują skuteczne wdrażanie sztucznej inteligencji jako technologii stanowiącej wsparcie w procesach decyzyjnych w obszarze marketingu w przedsiębiorstwie; – jakie wyróżnia się modele zastosowania sztucznej inteligencji w podejmowaniu decyzji w przedsiębiorstwie? Wyniki: wykorzystanie możliwości stwarzanych przez sztuczną inteligencję we wspieraniu decyzji marketingowych przynosi wiele korzyści, lecz wymaga przełamywania barier mentalnych i kulturowych. Należy podkreślić, że bazowanie na sztucznej inteligencji w procesach decyzyjnych nie oznacza eliminacji ludzi, w szczególności utalentowanych, ponieważ to pracownik może zrewidować kryteria decyzyjne, czy też stwierdzić, że zdezaktualizował się algorytm, w oparciu o który podejmowane były decyzje w przedsiębiorstwie. Ograniczenia/implikacje badawcze: empiryczna weryfikacja zaproponowanego modelu pozwoliłaby na identyfikację roli, którą odgrywają utalentowani pracownicy oraz algorytmy w procesach decyzyjnych w dobie rozwoju innowacyjnych rozwiązań informatycznych wraz z określeniem hierarchii czynników stymulujących te procesy. Oryginalność/wartość: efektem prowadzonych w artykule rozważań jest propozycja modelu czynników i typów rozwiązań pozwalających na efektywne łączenie zasobów ludzkich określanych jako talent i sztucznej inteligencji w podejmowaniu decyzji z zakresu marketingu w przedsiębiorstwie.
Źródło:
Problemy Zarządzania; 2021, 19, 1/2021 (91); 65-75
1644-9584
Pojawia się w:
Problemy Zarządzania
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of artificial neural networks in predicting voter turnout based on the analysis of demographic data
Autorzy:
Michalak, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/92572.pdf
Data publikacji:
2019
Wydawca:
Oddział Kartograficzny Polskiego Towarzystwa Geograficznego
Tematy:
artificial neural networks
voter turnout
machine learning
cartographic research method
Opis:
The author presents the results of research on the use of artificial neural networks in predicting voter turnout. He describes the principles of operation of artificial neural networks, as well as detailed results of two machine learning methods used to predict voter turnout. The research resulted in creation of a functional model that allows for prediction of voter turnout results with a considerable degree of accuracy. The entire research process was carried out using the cartographic research method.
Źródło:
Polish Cartographical Review; 2019, 51, 3; 109-116
2450-6974
Pojawia się w:
Polish Cartographical Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial Intelligence in Audit
Sztuczna inteligencja w audycie
Autorzy:
Karmańska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/2158933.pdf
Data publikacji:
2022
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
audit
Artificial Intelligence
machine learning
audyt
sztuczna inteligencja
uczenie maszynowe
Opis:
The main objective of this paper is to identify the benefits of applying the Artificial Intelligence (AI) in the audit sector. The study employed a questionnaire for a research sample including 206 auditing and accounting practitioners and students. Data were collected via an online survey. A principal axis factor analysis with the Promax rotation was conducted to assess the underlying structure for the points of the questionnaire. The research outcomes indicate that, in the opinion of the respondents, AI adoption increases audit efficiency, and enhances client communication and service. Finally, AI can also automate time-consuming and routine tasks. The three indicated factors account for 62.223% variance. The findings reveal the advantages of AI adoption and could support managers in deploying new technology in their organizations. The research limitation concerns the fact that this study focused only on respondents from Poland.
Celem artykułu jest wskazanie korzyści płynących z zastosowania sztucznej inteligencji (AI) w badaniu sprawozdań finansowych. Posłużono się kwestionariuszem ankiety. Próbą badawczą objęto 206 praktyków i studentów audytu i rachunkowości. Zastosowano analizę czynnikową metodą głównych składowych z rotacją Promax. Wyniki wskazują, że w opinii respondentów zastosowanie sztucznej inteligencji zwiększa efektywność audytu. Sztuczna inteligencja usprawnia komunikację i obsługę klienta. Ponadto AI może zautomatyzować czasochłonne i rutynowe zadania. Powyższe trzy czynniki odpowiadają za 62,223% wariancji. Wyniki badania wskazują na korzyści płynące z implementacji sztucznej inteligencji w audycie i mogą wspierać menedżerów we wdrażaniu nowych technologii w ich organizacjach. Ograniczeniem badawczym jest fakt, że badanie koncentruje się na respondentach jedynie z Polski.
Źródło:
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu; 2022, 66, 4; 87-99
1899-3192
Pojawia się w:
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An investigation of the relationship between encoder difference and thermo-elastic machine tool deformation
Autorzy:
Brecher, Christian
Dehn, Mathias
Neus, Stephan
Powiązania:
https://bibliotekanauki.pl/articles/24084708.pdf
Data publikacji:
2023
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
machine tool
thermal error compensation
machine learning
artificial neural network
Opis:
New approaches, using machine learning to model the thermo-elastic machine tool error, often rely on machine internal data, like axis speed or axis position as input data, which have a delayed relation to the thermo-elastic error. Since there is no direct relation to the thermo-elastic error, this can lead to an increased computation inaccuracy of the model or the need for expensive sensor equipment for additional input data. The encoder difference is easy to obtain and has a direct relationship with the thermo-elastic error and therefore has a high potential to improve the accuracy thermo-elastic error models. This paper first investigates causes of the encoder difference and its relationship with the thermo-elastic error. Afterwards, the model is presented, which uses the encoder difference to compute the thermo-elastic error. Due to the complexity of the relationship, it is necessary, to use a machine learning approach for this. To conclude, the potential of the encoder difference as an input of the model is evaluated.
Źródło:
Journal of Machine Engineering; 2023, 23, 3; 26--37
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inteligentny system wspomagający proces identyfikacji perspektywicznych horyzontów w wielohoryzontowych złożach gazu ziemnego uwzględniający kryterium ekonomiczne ich udostępnienia i eksploatacji
Intelligent system supporting the process of identification of perspective horizons in multi-horizontal gas deposits taking into account economic criteria, their completion and exploitation
Autorzy:
Pańko, Adam
Powiązania:
https://bibliotekanauki.pl/articles/31344032.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
sztuczna inteligencja
uczenie maszynowe
sztuczne sieci neuronowe
zastępczy model złożowy
analiza ekonomiczna
artificial intelligence
machine learning
artificial neural network
surrogate reservoir model
economic analysis
Opis:
W artykule zaprezentowano inteligentny system wspomagający proces identyfikacji perspektywicznych horyzontów złożowych w wielohoryzontowych złożach gazu ziemnego, uwzględniający kryterium ekonomiczne ich udostępnienia i eksploatacji. W procesie projektowania systemu zostały wykorzystane dotychczasowe doświadczenia firmy ORLEN Upstream z prac prowadzonych na obszarze zapadliska przedkarpackiego w utworach miocenu, obejmujące etap poszukiwania i eksploatacji wielohoryzontowych złóż gazu ziemnego. System został opracowany na bazie sztucznej inteligencji (SI) z wykorzystaniem między innymi sztucznych sieci neuronowych (SSN) i metod uczenia maszynowego (ML) oraz dodatkowo metod tzw. eksperymentu projektowanego (ang. design of experiment, DOE). Pierwsza część systemu obejmuje procesy związane z selekcją odpowiednich danych wejściowych i ich przygotowaniem do wykorzystania w kolejnych elementach systemu. Kolejnym etapem inteligentnego systemu jest identyfikacja perspektywicznych horyzontów złożowych w nowo wierconych odwiertach na podstawie wyników wykonanych opróbowań typu DST (ang. drill stem test) i testów produkcyjnych w dotychczas odwierconych i eksploatowanych odwiertach przez ORLEN Upstream. Następny element systemu stanowi projekt bazy danych wejściowych do budowy zastępczego modelu złożowego (ZMZ). Do konstrukcji bazy danych wykorzystano metodę Latin hypercube i symulator numeryczny Eclipse. W dalszej części systemu skonstruowany model zastępczy został użyty do probabilistycznego generowania profili wydobycia gazu ze zidentyfikowanych w poprzednim etapie perspektywicznych horyzontów złożowych. Ostatnim elementem zaprojektowanego systemu jest analiza ekonomiczna opłacalności procesu udostępniania i eksploatacji, bazująca między innymi na wyznaczonych profilach wydobycia gazu. Wynikiem analizy jest wyznaczenie podstawowych wskaźników ekonomicznych inwestycji. Na podstawie przeprowadzonej analizy ekonomicznej tworzony jest ranking zidentyfikowanych horyzontów i podejmowana jest decyzja o ewentualnym udostępnieniu i eksploatacji zidentyfikowanego horyzontu lub odstąpieniu od jego opróbowania.
The article presents an intelligent system supporting the process of identification of perspective horizons in multi-horizontal gas deposits taking into account economic criteria of their completion and exploitation. Artificial Intelligence has been used for more than two decades as a development tool for solutions in several areas of the E&P industry: production control and optimization, forecasting, ans simulation, among many others. The intelligent system was designed based on so far carried out work by the ORLEN Upstream company in the area of the Carpathian Foredeep (Miocene formations), including the phase of exploration and exploitation of multi-horizontal gas deposits. The system was developed based on artificial intelligence (AI) using, among other things, artificial neural networks (ANN), machine learning (ML), and additional methods of design of experiment (DOE). The first part of the designed system includes processes connected with the selection of proper input data and their preparation to be utilized in the next section of the system. The next stage of the intelligent system is the identification of perspective horizons in the new drilling wells based on results from performed DST and production tests in so far drilled and exploited wells by ORLEN Upstream. The subsequent stage is the design of input database for the construction of the Surrogate Reservoir Model (SRM). This input database was prepared using the Latin Hypercube method and the commercial reservoir simulator Eclipse. In the duration of the next stage of the system, the previously prepared Surrogate Reservoir Model was utilized to probabilistically generate production gas profiles from identified horizons. The final part of the intelligent system is the economic profitability analysis of investments, among other things, based on generated production profiles. The results of the economic analysis are economic indicators of investment. The decision concerning the possible completion and exploitation of the identified horizon or renouncement of the execution of the drill stem test is made on the basis of the economic results.
Źródło:
Nafta-Gaz; 2022, 78, 11; 827-834
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ensemble machine learning methods to predict the balancing of ayurvedic constituents in the human body
Autorzy:
Rajasekar, Vani
Krishnamoorthi, Sathya
Saracevic, Muzafer
Pepic, Dzenis
Zajmovic, Mahir
Zogic, Haris
Powiązania:
https://bibliotekanauki.pl/articles/27312840.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
machine learning
artificial neural networks
diagnose
Ayurveda constituent
support vector machine
Opis:
In this paper, we demonstrate the result of certain machine-learning methods like support vector machine (SVM), naive Bayes (NB), decision tree (DT), k-nearest neighbor (KNN), artificial neural network (ANN), and AdaBoost algorithms for various performance characteristics to predict human body constituencies. Ayurveda-dosha studies have been used for a long time, but the quantitative reliability measurement of these diagnostic methods still lags. The careful and appropriate analysis leads to an effective treatment to predict human body constituencies. From an observation of the results, it is shown that the AdaBoost algorithm with hyperparameter tuning provides enhanced accuracy and recall (0.97), precision and F-score (0.96), and lower RSME values (0.64). The experimental results reveal that the improved model (which is based on ensemble-learning methods) significantly outperforms traditional methods. According to the findings, advancements in the proposed algorithms could give machine learning a promising future.
Źródło:
Computer Science; 2022, 23 (1); 117--132
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial intelligence applications in project scheduling: a systematic review, bibliometric analysis, and prospects for future research
Autorzy:
Bahroun, Zied
Tanash, Moayad
Ad, Rami As
Alnajar, Mohamad
Powiązania:
https://bibliotekanauki.pl/articles/27315576.pdf
Data publikacji:
2023
Wydawca:
STE GROUP
Tematy:
artificial intelligence
machine learning
project scheduling
bibliometric analysis
network analysis
review
Opis:
The availability of digital infrastructures and the fast-paced development of accompanying revolutionary technologies have triggered an unprecedented reliance on Artificial intelligence (AI) techniques both in theory and practice. Within the AI domain, Machine Learning (ML) techniques stand out as essential facilitator largely enabling machines to possess human-like cognitive and decision making capabilities. This paper provides a focused review of the literature addressing applications of emerging ML toolsto solve various Project Scheduling Problems (PSPs). In particular, it employs bibliometric and network analysis tools along with a systematic literature review to analyze a pool of 104 papers published between 1985 and August 2021. The conducted analysis unveiled the top contributing authors, the most influential papers as well as the existing research tendencies and thematic research topics within this field of study. A noticeable growth in the number of relevant studies is seen recently with a steady increase as of the year 2018. Most of the studies adopted Artificial Neural Networks, Bayesian Network and Reinforcement Learning techniques to tackle PSPs under a stochastic environment, where these techniques are frequently hybridized with classical metaheuristics. The majority of works (57%) addressed basic Resource Constrained PSPs and only 15% are devoted to the project portfolio management problem. Furthermore, this study clearly indicates that the application of AI techniques to efficiently handle PSPs is still in its infancy stage bringing out the need for further research in this area. This work also identifies current research gaps and highlights a multitude of promising avenues for future research.
Źródło:
Management Systems in Production Engineering; 2023, 2 (31); 144--161
2299-0461
Pojawia się w:
Management Systems in Production Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning in pharmacology: opportunities and threats
Autorzy:
Kocić, Ivan
Kocić, Milan
Rusiecka, Izabela
Kocić, Adam
Kocić, Eliza
Powiązania:
https://bibliotekanauki.pl/articles/25728738.pdf
Data publikacji:
2022-09-06
Wydawca:
Gdański Uniwersytet Medyczny
Tematy:
machine learning
pharmacology
deep learning
artificial intelligence
drug research and development
Opis:
Introduction This review aims to present briefly the new horizon opened to pharmacology by the deep learning (DL) technology, but also to underline the most important threats and limitations of this method. Material and Methods We searched multiple databases for articles published before May 2021 according to the preferred reported item related to deep learning and drug research. Out of the 267 articles retrieved, we included 50 in the final review. Results DL and other different types of artificial intelligence have recently entered all spheres of science, taking an increasingly central position in the decision-making processes, also in pharmacology. Hence, there is a need for better understanding of these technologies. The basic differences between AI (artificial intelligence), DL and ML (machine learning) are explained. Additionally, the authors try to highlight the role of deep learning methods in drug research and development as well as in improving the safety of pharmacotherapy. Finally, future directions of DL in pharmacology were outlined as well as possible misuses of it. Conclusions DL is a promising and powerful tool for comprehensive analysis of big data related to all fields of pharmacology, however it has to be used carefully.
Źródło:
European Journal of Translational and Clinical Medicine; 2022, 5, 2; 88-94
2657-3148
2657-3156
Pojawia się w:
European Journal of Translational and Clinical Medicine
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies