Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "python" wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
Hybrydowy system rekomendacji planów treningowych
Training plans hybrid recommender system
Autorzy:
Kaczanowski, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/91455.pdf
Data publikacji:
2019
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
uczenie maszynowe
sztuczna inteligencja
nauka o danych
hybrydowe systemy rekomendacji
Microsoft Azure Machine Learning
język programowania Python
machine learning
artificial intelligence
data science
hybrid recommender
Python programming language
Opis:
Hybrydowe systemy rekomendacji łączą zalety metod stosowanych powszechnie w rekomendacji. Głównym celem tego artykułu jest przedstawienie zastosowania uczenia maszynowego do budowy hybrydowego silnika rekomendacji. Uczenie maszynowe jest poddziedziną sztucznej inteligencji, która wykazuję obiecujące rezultaty w klasyfikacji, predykcji, wykrywaniu anomalii i rekomendacji. W tym artykule zaproponowano koncepcję spersonalizowanego modelu systemu rekomendacji opartego na parametrach i planach treningowych sportowców. Badania przeprowadzono w środowisku chmurowym Microsoft Azure Machine Learning Studio na zbiorze danych wygenerowanym na podstawie danych referencyjnych.
Hybrid recommendation systems combine the advantages of commonly used methods in recommendations. This main objective of this article is to present application of machine learning to build a hybrid recommendation engine. Machine learning is subdomain of artificial intelligence that show promising results in classification, prediction, anomaly detection and recommendations. This paper proposed a personalized recommendation system model based on athletes parameters and training plans. The researches were carried out in the cloud environment Microsoft Azure Machine Learning Studio on football data set.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2019, 13, 20; 29-40
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applying Machine Learning to Software Fault Prediction
Autorzy:
Wójcicki, B.
Dabrowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/384105.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
classifier
fault prediction
machine learning
metric
Naïve Bayes
Python
quality
software intelligence
Opis:
Introduction: Software engineering continuously suffers from inadequate software testing. The automated prediction of possibly faulty fragments of source code allows developers to focus development efforts on fault-prone fragments first. Fault prediction has been a topic of many studies concentrating on C/C++ and Java programs, with little focus on such programming languages as Python. Objectives: In this study the authors want to verify whether the type of approach used in former fault prediction studies can be applied to Python. More precisely, the primary objective is conducting preliminary research using simple methods that would support (or contradict) the expectation that predicting faults in Python programs is also feasible. The secondary objective is establishing grounds for more thorough future research and publications, provided promising results are obtained during the preliminary research. Methods: It has been demonstrated that using machine learning techniques, it is possible to predict faults for C/C++ and Java projects with recall 0.71 and false positive rate 0.25. A similar approach was applied in order to find out if promising results can be obtained for Python projects. The working hypothesis is that choosing Python as a programming language does not significantly alter those results. A preliminary study is conducted and a basic machine learning technique is applied to a few sample Python projects. If these efforts succeed, it will indicate that the selected approach is worth pursuing as it is possible to obtain for Python results similar to the ones obtained for C/C++ and Java. However, if these efforts fail, it will indicate that the selected approach was not appropriate for the selected group of Python projects. Results: The research demonstrates experimental evidence that fault-prediction methods similar to those developed for C/C++ and Java programs can be successfully applied to Python programs, achieving recall up to 0.64 with false positive rate 0.23 (mean recall 0.53 with false positive rate 0.24). This indicates that more thorough research in this area is worth conducting. Conclusion: Having obtained promising results using this simple approach, the authors conclude that the research on predicting faults in Python programs using machine learning techniques is worth conducting, natural ways to enhance the future research being: using more sophisticated machine learning techniques, using additional Python-specific features and extended data sets.
Źródło:
e-Informatica Software Engineering Journal; 2018, 12, 1; 199-216
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial Intelligence Algorithms for the Analysis of Mechanical Property of Friction Stir Welded Joints by using Python Programming
Algorytmy sztucznej inteligencji do analizy właściwości mechanicznych połączeń zgrzewanych tarciowo z przemieszaniem przy użyciu programowania w języku Python
Autorzy:
Mishra, Akshansh
Powiązania:
https://bibliotekanauki.pl/articles/1819221.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
uczenie maszynowe
sieć neuronowa sztuczna
drzewo decyzyjne
optymalizacja
zgrzewanie tarciowe z przemieszaniem
machine learning
artificial neural network
decision tree
optimization
friction stir welding
Opis:
In modern computational science, the interplay existing between machine learning and optimization process marks the most vital developments. Optimization plays an important role in mechanical industries because it leads to reduce in material cost, time consumption and increase in production rate. The recent work focuses on performing the optimization task on Friction Stir Welding process for obtaining the maximum Ultimate Tensile Strength (UTS) of the friction stir welded joints. Two machine learning algorithms i.e. Artificial Neural Network (ANN) and Decision Trees regression model are selected for the purpose. The input variables are Tool Rotational Speed (RPM), Tool Traverse Speed (mm/min) and Axial Force (KN) while the output variable is Ultimate Tensile Strength (MPa). It is observed that in case of the Artificial Neural Networks the Root Mean Square Errors for training and testing sets are 0.842 and 0.808 respectively while in case of Decision Trees regression model, the training and testing sets result Root Mean Square Errors of 11.72 and 14.61. So, it can be concluded that ANN algorithm gives better and accurate result than Decision Tree regression algorithm.
We współczesnych obliczeniach naukowych wzajemna zależność między uczeniem maszynowym a procesem optymalizacji wyznacza najbardziej istotne osiągnięcia. Optymalizacja odgrywa ważną rolę w przemyśle mechanicznym, ponieważ prowadzi do obniżenia kosztów materiałów, zużycia czasu i wzrostu szybkości produkcji. Ostatnie prace skupiają się na wykonaniu optymalizacji procesu zgrzewania tarciowego z przemieszaniem w celu uzyskania maksymalnej wytrzymałości na rozciąganie (UTS) połączeń zgrzewanych tarciowo z przemieszaniem. Do tego celu wybrano dwa algorytmy uczenia maszynowego, tj. Sztuczną sieć neuronową (ANN) i model decyzyjnego drzewa regresyjnego. Zmienne wejściowe to prędkość obrotowa narzędzia [obr/min], prędkość posuwu narzędzia [mm/min] i siła osiowa [kN], natomiast zmienną wyjściową jest maksymalna wytrzymałość na rozciąganie [MPa]. Zaobserwowano, że w przypadku sztucznych sieci neuronowych średnie błędy kwadratowe zbiorów uczących i testowych wynoszą odpowiednio 0,842 i 0,808, podczas gdy w przypadku modelu decyzyjnego drzewa regresji zbiory uczące i testujące dają średnie błędy kwadratowe 11,72 i 14,61. Można więc stwierdzić, że algorytm ANN daje lepsze i dokładniejsze wyniki niż algorytm regresji drzewa decyzyjnego.
Źródło:
Welding Technology Review; 2020, 92, 6; 7--16
0033-2364
2449-7959
Pojawia się w:
Welding Technology Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Python library for the Jupyteo IDE Earth observation processing tool enabling interoperability with the QGIS System for use in data science
Autorzy:
Bednarczyk, Michał
Powiązania:
https://bibliotekanauki.pl/articles/2055774.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Earth observation data processing
IDE
IPython
Jupyter notebook
web processing service
GIS
data science
machine learning
API
Opis:
This paper describes JupyQgis – a new Python library for Jupyteo IDE enabling interoperability with the QGIS system. Jupyteo is an online integrated development environment for earth observation data processing and is available on a cloud platform. It is targeted at remote sensing experts, scientists and users who can develop the Jupyter notebook by reusing embedded open-source tools, WPS interfaces and existing notebooks. In recent years, there has been an increasing popularity of data science methods that have become the focus of many organizations. Many scientific disciplines are facing a significant transformation due to data-driven solutions. This is especially true of geodesy, environmental sciences, and Earth sciences, where large data sets, such as Earth observation satellite data (EO data) and GIS data are used. The previous experience in using Jupyteo, both among the users of this platform and its creators, indicates the need to supplement its functionality with GIS analytical tools. This study analyzed the most efficient way to combine the functionality of the QGIS system with the functionality of the Jupyteo platform in one tool. It was found that the most suitable solution is to create a custom library providing an API for collaboration between both environments. The resulting library makes the work much easier and simplifies the source code of the created Python scripts. The functionality of the developed solution was illustrated with a test use case.
Źródło:
Geomatics and Environmental Engineering; 2022, 16, 1; 117--144
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Python Machine Learning. Dry Beans Classification Case
Autorzy:
Słowiński, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/50091919.pdf
Data publikacji:
2024-09
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
machine learning
deep learning
data dimension reduction
activation function
Opis:
A dataset containing over 13k samples of dry beans geometric features was analyzed using machine learning (ML) and deep learning (DL) techniques with the goal to automatically classify the bean species. Performance in terms of accuracy, train and test time was analyzed. First the original dataset was reduced to eliminate redundant features (too strongly correlated and echoing others). Then the dataset was visualized and analyzed with a few shallow learning techniques and simple artificial neural network. Cross validation was used to check the learning process repeatability. Influence of data preparation (dimension reduction) on shallow learning techniques were observed. In case of Multilayer Perceptron 3 activation functions were tried: ReLu, ELU and sigmoid. Random Forest appeared to be the best model for dry beans classification task reaching average accuracy reaching 92.61% with reasonable train and test times.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2024, 18, 30; 7-26
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies