Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "SPARSE" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Frequency Selection Based Separation of Speech Signals with Reduced Computational Time Using Sparse NMF
Autorzy:
Varshney, Y. V.
Abbasi, Z. A.
Abidi, M. R.
Farooq, O.
Powiązania:
https://bibliotekanauki.pl/articles/176829.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sparse NMF
non-negative matrix factorisation
mixed speech recognition
machine learning
Opis:
Application of wavelet decomposition is described to speed up the mixed speech signal separation with the help of non-negative matrix factorisation (NMF). It is assumed that the basis vectors of training data of individual speakers had been recorded. In this paper, the spectrogram magnitude of a mixed signal has been factorised with the help of NMF with consideration of sparseness of speech signals. The high frequency components of signal contain very small amount of signal energy. By rejecting the high frequency components, the size of input signal is reduced, which reduces the computational time of matrix factorisation. The signal of lower energy has been separated by using wavelet decomposition. The present work is done for wideband microphone speech signal and standard audio signal from digital video equipment. This shows an improvement in the separation capability using the proposed model as compared with an existing one in terms of correlation between separated and original signals. Obtained signal to distortion ratio (SDR) and signal to interference ratio (SIR) are also larger as compare of the existing model. The proposed model also shows a reduction in computational time, which results in faster operation.
Źródło:
Archives of Acoustics; 2017, 42, 2; 287-295
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sparse data classifier based on first-past-the-post voting system
Autorzy:
Cudak, Magdalena
Piech, Mateusz
Marcjan, Robert
Powiązania:
https://bibliotekanauki.pl/articles/27312911.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
POI
machine learning
geospatial data
data science
first-past-the-post
random forest
point of interest
Opis:
A point of interest (POI) is a general term for objects that describe places from the real world. The concept of POI matching (i.e., determining whether two sets of attributes represent the same location) is not a trivial challenge due to the large variety of data sources. The representations of POIs may vary depending on the basis of how they are stored. A manual comparison of objects is not achievable in real time; therefore, there are multiple solutions for automatic merging. However, there is no yet the efficient solution solves the missing of the attributes. In this paper, we propose a multi-layered hybrid classifier that is composed of machine-learning and deep-learning techniques and supported by a first-past-the-post voting system. We examined different weights for the constituencies that were taken into consideration during a majority (or supermajority) decision. As a result, we achieved slightly higher accuracy than the best current model (random forest), which also is based on voting.
Źródło:
Computer Science; 2022, 23 (2); 277--296
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An autoencoder-enhanced stacking neural network model for increasing the performance of intrusion detection
Autorzy:
Brunner, Csaba
Kő, Andrea
Fodor, Szabina
Powiązania:
https://bibliotekanauki.pl/articles/2147134.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
intrusion detection
neural network
ensemble classifiers
hyperparameter optimization
sparse autoencoder
NSL-KDD
machine learning
Opis:
Security threats, among other intrusions affecting the availability, confidentiality and integrity of IT resources and services, are spreading fast and can cause serious harm to organizations. Intrusion detection has a key role in capturing intrusions. In particular, the application of machine learning methods in this area can enrich the intrusion detection efficiency. Various methods, such as pattern recognition from event logs, can be applied in intrusion detection. The main goal of our research is to present a possible intrusion detection approach using recent machine learning techniques. In this paper, we suggest and evaluate the usage of stacked ensembles consisting of neural network (SNN) and autoencoder (AE) models augmented with a tree-structured Parzen estimator hyperparameter optimization approach for intrusion detection. The main contribution of our work is the application of advanced hyperparameter optimization and stacked ensembles together. We conducted several experiments to check the effectiveness of our approach. We used the NSL-KDD dataset, a common benchmark dataset in intrusion detection, to train our models. The comparative results demonstrate that our proposed models can compete with and, in some cases, outperform existing models.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 2; 149--163
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies