Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "robust stability" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Simple conditions for robust stability of linear positive discrete-time systems with one delay
Autorzy:
Busłowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/384312.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
robust stability
linear system
positive
discrete-time
delay
Opis:
Simple new necessary and sufficient conditions for robust stability of the positive linear discrete-time systems with one delay in the general case and in the two special cases: 1) linear unity rank uncertainty structure, 2) linear uncertainty structure with non-negative perturbation matrices, are established. The conditions are based on the new simple criterion for asymptotic stability of the positive linear discrete-time systems with one delay, proved in the paper. The considerations are illustrated by numerical examples.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2008, 2, 2; 18-22
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simple conditions for robust stability of positive discrete-time linear systems with delays
Autorzy:
Busłowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/970235.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
stability
robust stability
linear system
delays
linear uncertainty
interval system
Opis:
The paper is devoted to the problem of robust stability of positive linear discrete-time systems with delays in the case of structured perturbations of state matrices. Simple new necessary and sufficient conditions for robust stability in the general case and in the case of system with linear uncertainty structure are established for two sub-cases: 1) unity rank uncertainty structure, 2) non-negative perturbation matrices. It is shown that robust stability of the positive discrete-time linear system with delays is equivalent to: 1) robust stability of the corresponding positive system without delays of the same order as time-delay system - in the general case, 2) asymptotic stability of finite family of the positive vertex systems without delays - in the case of a linear unity rank uncertainty structure, 3) asymptotic stability of only one positive vertex system without delays - in the case of a linear uncertainty structure with non-negative perturbation matrices.
Źródło:
Control and Cybernetics; 2010, 39, 4; 1159-1171
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robust stability of a class of uncertain fractional order linear systems with pure delay
Autorzy:
Busłowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/229707.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
linear system
fractional
continuous-time
pure delay
robust stability
interval matrix
Opis:
The paper considers the robust stability problem of uncertain continuous-time fractional order linear systems with pure delay in the following two cases: a) the state matrix is a linear convex combination of two known constant matrices, b) the state matrix is an interval matrix. It is shown that the system is robustly stable if and only if all the eigenvalues of the state matrix multiplied by delay in power equal to fractional order are located in the open stability region in the complex plane. Parametric description of boundary of this region is derived. In the case a) the necessary and sufficient computational condition for robust stability is established. This condition is given in terms of eigenvalue-loci of the state matrix, fractional order and time delay. In the case b) the method for determining the rectangle with sides parallel to the axes of the complex plane in which all the eigenvalues of interval matrix are located is given and the sufficient condition for robust stability is proposed. This condition is satisfied if the rectangle multiplied by delay in power equal to fractional order lie in the stability region. The considerations are illustrated by numerical examples.
Źródło:
Archives of Control Sciences; 2015, 25, 2; 177-187
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies