Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "linear discriminant analysis" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Linear discriminant analysis with a generalization of the Moore–Penrose pseudoinverse
Autorzy:
Górecki, T.
Łuczak, M.
Powiązania:
https://bibliotekanauki.pl/articles/330828.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
linear discriminant analysis
Moore–Penrose pseudoinverse
machine learning
liniowa analiza dyskryminacji
pseudoodwrotność Moore–Penrose
uczenie maszynowe
Opis:
The Linear Discriminant Analysis (LDA) technique is an important and well-developed area of classification, and to date many linear (and also nonlinear) discrimination methods have been put forward. A complication in applying LDA to real data occurs when the number of features exceeds that of observations. In this case, the covariance estimates do not have full rank, and thus cannot be inverted. There are a number of ways to deal with this problem. In this paper, we propose improving LDA in this area, and we present a new approach which uses a generalization of the Moore–Penrose pseudoinverse to remove this weakness. Our new approach, in addition to managing the problem of inverting the covariance matrix, significantly improves the quality of classification, also on data sets where we can invert the covariance matrix. Experimental results on various data sets demonstrate that our improvements to LDA are efficient and our approach outperforms LDA.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 2; 463-471
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recognition of occluded traffic signs based on two-dimensional linear discriminant analysis
Autorzy:
Forczmański, P.
Powiązania:
https://bibliotekanauki.pl/articles/393233.pdf
Data publikacji:
2013
Wydawca:
Polskie Stowarzyszenie Telematyki Transportu
Tematy:
traffic sign recognition
linear discriminant analysis
classification
occlusion
rozpoznawanie znaków drogowych
liniowa analiza dyskryminacji
klasyfikacja
okluzje
Opis:
Traffic signs recognition involving digital image analysis is getting more and more popular. The main problem associated with visual recognition of traffic signs is associated with difficult conditions of image acquisition. In the paper we present a solution to the problem of signs occlusion. Presented method belongs to the group of appearance-based approaches, employing template matching working in the reduced feature space obtained by Linear Discriminant Analysis. The method deals with all types of signs, regarding their shape and color in contrast to commercial systems, installed in higher-class cars, that only detect the round speed limit signs and overtaking restrictions. Finally, we present some experiments performed on a benchmark databases with different kinds of occlusion.
Źródło:
Archives of Transport System Telematics; 2013, 6, 3; 10-13
1899-8208
Pojawia się w:
Archives of Transport System Telematics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of correlation based dimension reduction methods
Autorzy:
Shin, Y. J.
Park, C. H.
Powiązania:
https://bibliotekanauki.pl/articles/907508.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
analiza korelacyjna
redukcja wymiaru
liniowa analiza dyskryminacji
canonical correlation analysis
dimension reduction
discriminative canonical correlation analysis
linear discriminant analysis
Opis:
Dimension reduction is an important topic in data mining and machine learning. Especially dimension reduction combined with feature fusion is an effective preprocessing step when the data are described by multiple feature sets. Canonical Correlation Analysis (CCA) and Discriminative Canonical Correlation Analysis (DCCA) are feature fusion methods based on correlation. However, they are different in that DCCA is a supervised method utilizing class label information, while CCA is an unsupervised method. It has been shown that the classification performance of DCCA is superior to that of CCA due to the discriminative power using class label information. On the other hand, Linear Discriminant Analysis (LDA) is a supervised dimension reduction method and it is known as a special case of CCA. In this paper, we analyze the relationship between DCCA and LDA, showing that the projective directions by DCCA are equal to the ones obtained from LDA with respect to an orthogonal transformation. Using the relation with LDA, we propose a new method that can enhance the performance of DCCA. The experimental results show that the proposed method exhibits better classification performance than the original DCCA.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2011, 21, 3; 549-558
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie maszyny wektorów nośnych oraz liniowej analizy dyskryminacyjnej jako klasyfikatorów cech w interfejsach mózg-komputer
Using support vector machine and linear discriminant analysis for features classification in brain-computer interfaces
Autorzy:
Jukiewicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/376916.pdf
Data publikacji:
2014
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
interfejs mózg-komputer
Maszyna Wektorów Nośnych
Liniowa Analiza Dyskryminacyjna
brain-computer interface
support vector machine (SVM)
linear discriminant analysis
Opis:
Głównym celem artykułu jest porównanie skuteczności klasyfikacji cech dwóch algorytmów klasyfikujących wykorzystywanych w interfejsach mózg-komputer: SVM (ang. Support Vector Machine, Maszyna Wektorów Nośnych) oraz LDA (ang. Linear Discriminant Analysis, Liniowa Analiza Dyskryminacyjna). W artykule przedstawiono interfejs, w którym użytkownikowi prezentowane są dwa bodźce migające z różną częstotliwością (10 i 15 Hz), a następnie za pomocą elektrod elektroencefalografu mierzona jest odpowiedź elektryczna mózgu. W takich interfejsach sygnał zbierany jest zwykle w okolicach potylicznych (nad korą wzrokową). W prezentowanym rozwiązaniu sygnał mierzony jest z okolic czołowych. W przetwarzaniu i analizie sygnału zastosowano algorytmy statystycznego uczenia maszynowego. Do ekstrakcji cech sygnału wykorzystano Szybką Transformatę Fouriera, do selekcji cech: test t-Welcha, a do klasyfikacji cech: SVM oraz DLA. Na podstawie odpowiedzi uzyskanej z klasyfikatora możliwe jest np. wysterowanie kierunku skrętu robota mobilnego lub włączenie czy wyłączenie oświetlenia.
The main aim of this article is to compare the effectiveness of the classification of the two classifiers used in brain-computer interfaces: SVM (Support Vector Machine) and LDA (Linear Discriminant Analysis). The article presents an interface in which the subject is presented the two stimuli flashing at different frequencies (10 and 15 Hz) and then by using EEG electrodes electrical response of the brain is measured. In these interfaces, the signal is typically collected in the occipital area (on the visual cortex). In the presented solution the signal is measured form the prefrontal cortex. For signal processing and analysis statistical machine learning algorithms were used. For features’ extraction Fast Fourier Transform was used. For features’ selection Welch’s t test was used. For features’ classification was used SVM and DLA. Based on the responses obtained from the classifier it is possible to control the direction of a mobile robot’s movement or turning the lights on and off.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2014, 79; 25-30
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Face Recognition Comparative Analysis Using Different Machine Learning Approaches
Autorzy:
Ahmed, Nisar
Khan, Farhan Ajmal
Ullah, Zain
Ahmed, Hasnain
Shahzad, Taimur
Ali, Nableela
Powiązania:
https://bibliotekanauki.pl/articles/2024199.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
linear discriminant analysis
k-nearest neighbor
support vector machine
principal component analysis
liniowa analiza dyskryminacyjna
maszyna wektorów podporowych
analiza głównych składowych
Opis:
The problem of a facial biometrics system was discussed in this research, in which different classifiers were used within the framework of face recognition. Different similarity measures exist to solve the performance of facial recognition problems. Here, four machine learning approaches were considered, namely, K-nearest neighbor (KNN), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and Principal Component Analysis (PCA). The usefulness of multiple classification systems was also seen and evaluated in terms of their ability to correctly classify a face. A combination of multiple algorithms such as PCA+1NN, LDA+1NN, PCA+ LDA+1NN, SVM, and SVM+PCA was used. All of them performed with exceptional values of above 90% but PCA+LDA+1N scored the highest average accuracy, i.e. 98%.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 1; 265-272
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robust content-based image retrieval using ICCV, GLCM, and DWT-MSLBP descriptors
Autorzy:
Chavda, Sagar
Goyani, Mahesh
Powiązania:
https://bibliotekanauki.pl/articles/27312841.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
content-based image retrieval
improved color coherence vector
gray-level co-occurrence matrix
discrete wavelet transform
multi-scale local binary pattern
principal component analysis
linear discriminant analysis
Opis:
Content-based image retrieval (CBIR) retrieves visually similar images from a dataset based on a specified query. A CBIR system measures the similarities between a query and the image contents in a dataset and ranks the dataset images. This work presents a novel framework for retrieving similar images based on color and texture features. We have computed color features with an improved color coherence vector (ICCV) and texture features with a gray-level co-occurrence matrix (GLCM) along with DWT-MSLBP (which is derived from applying a modified multi-scale local binary pattern [MS-LBP] over a discrete wavelet transform [DWT], resulting in powerful textural features). The optimal features are computed with the help of principal component analysis (PCA) and linear discriminant analysis (LDA). The proposed work uses a variancebased approach for choosing the number of principal components/eigenvectors in PCA. PCA with a 99.99% variance preserves healthy features, and LDA selects robust ones from the set of features. The proposed method was tested on four benchmark datasets with Euclidean and city-block distances. The proposed method outshines all of the identified state-of-the-art literature methods.
Źródło:
Computer Science; 2022, 23 (1); 5--36
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uogólniony liniowy klasyfikator Fishera
Generalised Fisher linear classifier
Autorzy:
Rasała, D.
Malina, D.
Powiązania:
https://bibliotekanauki.pl/articles/222224.pdf
Data publikacji:
2014
Wydawca:
Akademia Marynarki Wojennej. Wydział Dowodzenia i Operacji Morskich
Tematy:
liniowa analiza dyskryminacyjna
wektor dyskryminacyjny
obliczanie liczby progów
klasyfikator z jednym progiem
klasyfikator z dwoma progami
rozszerzone kryterium
linear discriminant analysis
Fisher discriminant vector
calculation of number of thresholds
double-threshold classifier
extended Fisher criterion
Opis:
W literaturze wielokrotnie omawiano klasyfikatory obrazów o rozkładach normalnych. Na ogół, kiedy dwie klasy są znacznie oddalone od siebie, to ich separację można przeprowadzić za pomocą jednej hiperpłaszczyzny. W artykule rozpatrywane są przypadki trudne, kiedy rozkłady znacznie nachodzą na siebie. Aby błąd klasyfikacji był wówczas mniejszy, do rozdzielenia klas lepiej użyć dwóch niż jednej płaszczyzny. Na początku został opisany algorytm, który bada i wyznacza liczbę przecięć dwóch funkcji Gaussa jednej zmiennej dla różnych przypadków. Potem algorytm ten został włączony do algorytmu uczenia i klasyfikacji dla zadania dwuklasowego. Następnie został on uogólniony do zadań wieloklasowych. Przeprowadzone eksperymenty na płaszczyźnie dla zadań trudnych, gdy liczba klas L = 2, 3, 4 wykazały, że zaproponowany algorytm dawał lepsze wyniki niż algorytm klasyczny z jedną płaszczyzną rozdzielającą.
Bayesian classifiers for normal distribution patterns have often been discussed in literature. In general, when two classes are considerably apart from each other, they can be separated with a single plane. In this paper we will exam-ine some difficult cases, i.e. when their distributions significantly overlap. In such cases, to minimize the classification error, it is better to use two planes instead of one to separate the classes. At the beginning, the paper describes an algorithm used to investigate and determine the number of intersections of two Gaussian functions for different cases. Further in the article, this algorithm is included in the learning and classification algorithm for a two-class task. Then the algorithm is generalized for multi-class tasks. The experiments carried out on a plane for difficult tasks, when the number of classes L = 2, 3, 4, show that the proposed algorithm produces better results than the conventional algorithm with one separating plane.
Źródło:
Zeszyty Naukowe Akademii Marynarki Wojennej; 2014, R. 55 nr 2 (197), 2 (197); 99-118
0860-889X
Pojawia się w:
Zeszyty Naukowe Akademii Marynarki Wojennej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identyfikacja koderów MP3 oraz urządzeń rejestrujących na podstawie badania plików fonicznych poddanych stratnej kompresji
Identyfication of MP3 encoders and recording equipment based on examination subjected to lossy date compression
Autorzy:
Korycki, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/1373994.pdf
Data publikacji:
2015
Wydawca:
Centralne Laboratorium Kryminalistyczne Policji
Tematy:
badanie autentyczności nagrań cyfrowych
identyfikacja koderów MP3
identyfikacja urządzeń rejestrujących
analiza dowodów cyfrowych
liniowa analiza dyskryminacyjna
authenticity examination of digital audio recording
identification of MP3 encoders
identification of recording eguipment
digital evidence analysis
linear discriminant analysis
Opis:
W pracy nakreślono problem identyfikacji koderów MP3 oraz urządzeń rejestrujących na podstawie analizy nagrań fonicznych poddanych stratnej kompresji. Zaproponowana metoda może być wykorzystana jako wsparcie dla innych rozwiązań służących do wykrywania podwójnej kompresji oraz detekcji nieciągłości. Prezentowane podejście polega na statystycznej analizie zmiennych pozyskanych bezpośrednio ze strumienia danych MP3 i stanowiących nieodłączne parametry kompresji. Wyznaczone wektory składające się z 46 cech zostały użyte jako sekwencje treningowe liniowej analizy dyskryminacyjnej (LDA), jednego z najpopularniejszych algorytmów uczenia maszynowego z nadzorem. Skuteczność metody identyfikacji koderów MP3 oraz urządzeń rejestrujących została przetestowana na specjalnie przygotowanej w tym celu bazie nagrań muzycznych składającej się z blisko miliona plików MP3. Wyniki badań zostały omówione w kontekście wpływu parametrów kompresji na możliwość detekcji fałszerstw w cyfrowych nagraniach fonicznych.
The paper outlines the problem of identification of MP3 encoders and recording devices based on the analysis of audio recordings subjected to lossy datę compression. The proposed method can be used as a support for other solutions used to detect double compression and discontinuities. The approach is based on the statistical analysis of the variables obtained directly from the MP3 data stream and constitute an inherent element of compression performance. Designated vectors consisting of 46 features were used as training sequences of linear discriminant analysis (LDA), one of the most popular supervised machinę learning algorithms. The effectiveness of this algorithms for the identification of MP3 encoders and recording equipment was tested on a musie database consisting of nearly one million MP3 files, specially prepared for this purpose. The results of the research were discussed in the context of the influence of compression parameters on the ability to detect falsification in digital audio recordings.
Źródło:
Problemy Kryminalistyki; 2015, 287; 28-39
0552-2153
Pojawia się w:
Problemy Kryminalistyki
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies