Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "kernel by monochromatic paths" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Kernels in edge coloured line digraph
Autorzy:
Galeana-Sánchez, H.
Pastrana Ramírez, L.
Powiązania:
https://bibliotekanauki.pl/articles/744205.pdf
Data publikacji:
1998
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
kernel
kernel by monochromatic paths
line digraph
edge coloured digraph
Opis:
We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the two following conditions (i) for every pair of different vertices u, v ∈ N there is no monochromatic directed path between them and (ii) for every vertex x ∈ V(D)-N there is a vertex y ∈ N such that there is an xy-monochromatic directed path.
Let D be an m-coloured digraph and L(D) its line digraph. The inner m-coloration of L(D) is the edge coloration of L(D) defined as follows: If h is an arc of D of colour c, then any arc of the form (x,h) in L(D) also has colour c.
In this paper it is proved that if D is an m-coloured digraph without monochromatic directed cycles, then the number of kernels by monochromatic paths in D is equal to the number of kernels by monochromatic paths in the inner edge coloration of L(D).
Źródło:
Discussiones Mathematicae Graph Theory; 1998, 18, 1; 91-98
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kernels in monochromatic path digraphs
Autorzy:
Galeana-Sánchez, Hortensia
Ramírez, Laura
Mejía, Hugo
Powiązania:
https://bibliotekanauki.pl/articles/744174.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
kernel
line digraph
kernel by monochromatic paths
monochromatic path digraph
edge-coloured digraph
Opis:
We call the digraph D an m-coloured digraph if its arcs are coloured with m colours. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike. Let D be an m-coloured digraph. A set N ⊆ V(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions:
(i) for every pair of different vertices u,v ∈ N there is no monochromatic directed path between them and
(ii) for each vertex x ∈ (V(D)-N) there is a vertex y ∈ N such that there is an xy-monochromatic directed path.
In this paper is defined the monochromatic path digraph of D, MP(D), and the inner m-colouration of MP(D). Also it is proved that if D is an m-coloured digraph without monochromatic directed cycles, then the number of kernels by monochromatic paths in D is equal to the number of kernels by monochromatic paths in the inner m-colouration of MP(D). A previous result is generalized.
Źródło:
Discussiones Mathematicae Graph Theory; 2005, 25, 3; 407-417
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies