- Tytuł:
- The lattice of subvarieties of the biregularization of the variety of Boolean algebras
- Autorzy:
- Płonka, Jerzy
- Powiązania:
- https://bibliotekanauki.pl/articles/729041.pdf
- Data publikacji:
- 2001
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
subdirectly irreducible algebra
lattice of subvarieties
Boolean algebra
biregular identity - Opis:
-
Let τ: F → N be a type of algebras, where F is a set of fundamental operation symbols and N is the set of all positive integers. An identity φ ≈ ψ is called biregular if it has the same variables in each of it sides and it has the same fundamental operation symbols in each of it sides. For a variety V of type τ we denote by $V_{b}$ the biregularization of V, i.e. the variety of type τ defined by all biregular identities from Id(V).
Let B be the variety of Boolean algebras of type $τ_{b}: {+,·,´} → N$, where $τ_{b}(+) = τ_{b}(·) = 2$ and $τ_{b}(´) = 1$. In this paper we characterize the lattice $ℒ(B_{b})$ of all subvarieties of the biregularization of the variety B. - Źródło:
-
Discussiones Mathematicae - General Algebra and Applications; 2001, 21, 2; 255-268
1509-9415 - Pojawia się w:
- Discussiones Mathematicae - General Algebra and Applications
- Dostawca treści:
- Biblioteka Nauki